Solution of a Cubic Equation by Successive Approximation. What is the solubility of PbCl_{2} in 0.10 M NaCl ?

$\mathrm{PbCl}_{2} \quad=$	Pb^{2+}	+	$2 \mathrm{Cl}^{-}$
--	0	0.10	
--	$+x$		$+2 x$
--	x		$0.10+2 x$

$(0.10+2 x)^{2} x=1.7 e-5$
Assume that $2 x=0$,
We have $\quad x=1.7 e-3$
Plug back into original eqn.
$[0.10+2(1.7 e-3)]^{2} 1.7 e-3=1.8 e-5 \neq 1.7 e-5$

Won't really consider this possibility in Chem 253 but consider:
***So back to the cubic equation.
To simplify consider that solve for x :
$x=1.7 e-5 /(0.10+2 x)^{2}$
now let $2 \mathrm{x}=0$
$x_{1}=1.7 e-5 /(0.10+2(0))^{2}=1.7 e-3$
plug x_{1} back into $2 x$
$x_{2}=1.7 \mathrm{e}-5 /(0.10+2(1.7 e-3))^{2}=1.59 e-3 \quad 2^{\text {nd }}$ iteration
$x_{3}=1.7 e-5 /(0.10+2(1.59 e-3))^{2}=1.60 e-3$
$3^{\text {rd }}$ iteration
so we can get x from the cubic eqn from Newton's "Method of Successive Approximation"
$2 x=0 \quad$ fails as $K_{\text {sp }}>1 e-6 \quad$ semi-soluble salts

