Solution of a Cubic Equation by Successive Approximation. What is the solubility of $PbCl_2$ in 0.10 M NaCl?

 PbCl₂
 =
 Pb²⁺
 +
 $2Cl^{-}$

 - 0
 0.10

 - +x
 +2x

 - x
 0.10 + 2x

 $(0.10 + 2x)^2 x = 1.7e-5$

Assume that 2x = 0,

We have x = 1.7e-3

Plug back into original eqn.

 $[0.10 + 2(1.7e-3)]^2 1.7e-3 = 1.8e-5 \neq 1.7e-5$

Won't really consider this possibility in Chem 253 but consider:

***So back to the cubic equation.

To simplify consider that solve for x:

 $x = 1.7e-5/(0.10 + 2x)^2$

now let 2x = 0

x ₁ = 1.7e-5/(0.10 + 2(0)) ² = 1.7e-3 plug x ₁ back into 2x	1 st iteration
x ₂ = 1.7e-5/(0.10 + 2(1.7e-3)) ² = 1.59e-3	2 nd iteration
x ₃ = 1.7e-5/(0.10 + 2(1.59e-3)) ² = 1.60e-3	3 rd iteration

so we can get x from the cubic eqn from Newton's "Method of Successive Approximation"

2x = 0 fails as $K_{sp} > 1e-6$ semi-soluble salts