Tool Material:

- High Speed Steel (HSS)
 - Use with softer materials (aluminum, plastic)
 - Cheaper and more common
 - Weighs less and appears brighter
 - Can be coated, in which case it will appear golden over the cutting area
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)

- Carbidé
 - Use with harder metals (carbon steel, titanium)
 - More expensive and brittle
 - Heavier and appears darker (gun metal)
 - Can be carbide tipped, in which case it will be a small carbide cutting surface brazed onto an HSS carrier

- Cobalt
 - For use with stainless steel only
 - Similar weight and appearance to carbide, with less shine and blue tint
 - Very uncommon in Idaho Machine Shop
 - Ask Russ if you think you need it

Endmills:

- **Center Cutting vs Non-Center Cutting**
 - Center Cutting
 - There is no hollowed out center
 - Allows the user to plunge, drill or ramp into a cut
 - Greatest variety of applications
 - More expensive to manufacture
 - Non-Center Cutting
 - Hollowed out center
 - Cannot plunge into materials
 - Cheaper to produce

- **Number of Flutes**
 - 2-Flute
 - Cutting surfaces spaced wider
 - Better for plastics and soft metals, like aluminum
 - Slightly higher feed rate
 - More stress on each cutting surface
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)
 - 4-Flute
 - Cutting surfaces closer together
 - Better for harder metals, like steels
 - Slightly lower feed rate
 - Distributes stress across more cutting surfaces
 - Refer to “Feeds and Speeds” chart for RPM and feed rate

- **Side profile of endmill has pointed tip**
 - Used for cutting chamfered edges or specific angled surface facing
 - Specified by endmill diameter and cutting angle
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)

- **Radius Mill**
 - Side profile of endmill inner-radius tip
 - Used for cutting filleted outside edges
 - Specified by endmill diameter and cut radius
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)

- **Chamfer Mill**
 - Side profile of endmill has rounded tip
 - Used for cutting chamfered edges or specific angled surface facing
 - Specified by endmill diameter and cutting angle
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)

- **Ball End Mill**
 - Side profile of endmill has rounded tip with diameter equal to endmill diameter
 - Used for cutting filleted inside edges, spherical holes, or rounded 3-D surface facing
 - Refer to “Feeds and Speeds” chart for RPM and feed rate (based on endmill diameter)

- **Square End Mill**
 - Side profile of endmill has square tip
 - Used for cutting square edges, such as channels, pockets, and facing operations
 - Most common endmill type
 - Refer to “Feeds and Speeds” chart for RPM and feed rate

Facing Tools:

- **Fly Cutter**
 - For removing large amounts of material in a radial plane or surfacing large areas
 - Using set screws, set diameter of cut
 - Operate at 50% of RPM and feed rate indicated by “Feeds and Speeds” chart
 - Ask a mentor or Russ if you think you need it

- **Facing Mill**
 - For facing a large surface to near-mirror finish or planing large areas quickly
 - Select facing tool (HSS vs. Carbide)
 - Refer to “Feeds and Speeds” chart by outer diameter of facing tool
 - Some can be operated at higher feed rate. Ask a mentor or Russ

Slot Cutters:

- **T-Slot Cutter**
 - Cut side slots, full t-slots, and keyways straighter than an endmill
 - Before employing T-slot cutter, remove as much material as possible with an endmill
 - Determine thickness and width of slot or keyway to be cut
 - Select cutter with appropriate dimensions
 - Operate slot cutter at 70% of speed indicated by “Feeds and Speeds” chart

- **Dovetail Mill**
 - For cutting dovetail side cut or full dovetail cuts
 - Specified by major diameter and cut angle
 - Operate at 70% of RPM and feed rate indicated by “Feeds and Speeds” chart

- **Thin Slot Cutter**
 - For cutting thin side slots or keyways
 - Determine thickness and depth of slot to be cut
 - Select cutter with appropriate dimensions
 - Mount cutter to appropriate stub arbor (see below)
 - Operate slot cutter at 70% of speed indicated by “Feeds and Speeds” chart

Stub Arbor:

- **Stub Arbor**
 - For mounting thin slot cutters and large diameter dovetail cutters
 - Specified by arbor diameter
 - Remove locknut and washer from end, slide cutter onto arbor, aligning slot on tool with key on arbor, and replace washer and locknut
 - Tighten until tool is immovable, but without causing deflection