Part 2: Engineering Calculations - 30 Points

1. You are going to heat $3.5 \mathrm{lb}_{\mathrm{m}}$ of Ammonia at constant pressure of 247 psia from a saturated liquid to a saturated vapor. Calculate how much heat (Btu) will be required to do this.
Remember: This process will have both heat and moving boundary work.
Tip: Be very careful with units on the $\int P d v$ work calculation
2. Air enters the compressor at 14.7 psia and $60^{\circ} \mathrm{F}$, and leaves at 119.0 psia . If the process is reversible and adiabatic (which means isentropic), but the specific heat of air is *not* constant, calculate the temperature (in ${ }^{\circ}$ F) of the air leaving the compressor. Hint: There is a table in your supplement that will be very useful.
3. You are going to fill an initially empty Acetylene tank $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ tank until it reaches 250 psia. The tank is wrapped in adiabatic insulation. The tank is connected to a supply of Acetylene that stays at a constant 500 psia and $75^{\circ} \mathrm{F}$ through the filling process. Additionally, the specific heats for Acetylene at $100^{\circ} \mathrm{F}$ are: $\mathrm{c}_{\mathrm{p}}=0.35 \mathrm{Btu} /\left(\mathrm{lbm}{ }^{\circ} \mathrm{R}\right)$, and $\mathrm{c}_{\mathrm{v}}=0.27 \mathrm{Btu} /\left(\mathrm{lbm}{ }^{\circ} \mathrm{R}\right)$
a. Set up the equations that describe the process happening, completing separating and integrating terms to get the governing equation. Simplify as appropriate.

$$
\begin{gathered}
\dot{Q}-\dot{W}+\sum_{i} \dot{m}_{l}\left(h_{i}+\frac{V_{i}^{2}}{2 g_{c}}+\frac{g}{g_{c}} z_{i}\right)-\sum_{e} \dot{m}_{e}\left(h_{e}+\frac{V_{e}^{2}}{2 g_{c}}+\frac{g}{g_{c}} z_{e}\right)=\frac{d}{d t}(U+K E+P E) \\
\sum_{i} \dot{m}_{l}-\sum_{e} \dot{m}_{e}=\frac{d m}{d t}
\end{gathered}
$$

b. Assuming constant specific heats (given above), solve for the final temperature (${ }^{\circ}$ F) of the Acetylene gas in the cylinder after it is filled.

