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EXECUTIVE SUMMARY 

 

The controller interface device (CID) is the result of several years of hardware and software 

development by NIATT. This project had two objectives: the first was to expand the capability 

of the CID for applications where the number of input/output connections limit performance. The 

second objective was to investigate a new application area for CID technology, developing and 

testing a prototype to use the CID and CORSIM simulation to test traffic controller compliance 

to NTCIP communication standards. 

 

This final report is made in two parts. The first describes the development of a synchronous data 

link control (SDLC) interface capability for the CID. The second part discusses the completion 

of the real-time playback system to test CID timing performance introduced in and is presented 

in the form of a paper titled: “Real-Time Playback Hardware-in-the-Loop Simulation of Traffic 

Systems,” presented at IECON 2005, 32nd Annual Conference of the IEEE Industrial Electronics 

Society. This paper discusses the development of a software-controlled embedded system to 

evaluate the effect of communication latencies in hardware-in-the-loop simulation of traffic 

systems. The tool uses the Controller Interface Device (CID) hardware developed for hardware-

in-the-loop simulation with modifications made to the firmware to support real-time playback 

(RTPB). RTPB simulators have been used in power systems as a cheap alternative to real-time 

simulators. In some cases RTPB is the only possible simulation method. This paper presents the 

application of RTPB to traffic simulations using actual traffic controller hardware. 
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PART 1: SYNCHRONOUS DATA LINK CONTROL INTERFACE FOR INTERFACE 
FOR CONTROLLER INTERFACE DEVICE TO TRAFFIC CONTROLLER 
COMMUNICATION  

A. INTRODUCTION 

The synchronous data link control (SDLC) controller interface device (CID) is an adaptation of 

the original CID. The SDLC version replaces the original microcontroller board with a modified 

board that incorporates the original board in addition to a connector that allows for SDLC 

communication to TS/2 standard traffic controllers (see Fig. 1a and 1b). Neither the motherboard 

nor the daughterboards need to be modified. The CID case will need an additional cut out for the 

series port. 

 

The benefit in using the new connector is that the SDLC link replaces over 80 wires with a single 

nine-wire RJ-45 cable by using high speed serial communications. Also, the SDLC link has 

additional features and modes that are not available in standard ABC type connectors for TS1 

Controllers. 

D-sub 

Microcontroller 
board

 

Figure 1a: SDLC microcontroller daughterboard compared to input, output and display 

boards. 
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Figure 1b. SDLC CID Circuit Board 
 

B. HARDWARE 

1. Revisions  

The main revisions include a change to a newer microcontroller; the Cypress FX2. The Cypress 

EZ- Universal Serial Bus (USB) AN2131 is now obsolete and the FX2 is an upgrade that allows 

use of the faster USB 2.0 protocol to communicate with the PC.  

 

The second main revision is the inclusion of the Zilog Universal Serial Controller or USC (part 

number Z16C30) that is used for all SDLC communication processes such as error correction, 

parity checks, and conversions from parallel to the correct serial bit rate. The integrated circuit 

(IC) is highly adjustable however the firmware uses only the limited features needed to transfer 

over the SDLC port. 

 

In order to switch between original and SDLC modes a two position switch is available on the 

right side of the microcontroller board. For SDLC mode the switch is the down position and for 

original the switch must be pressed in the upward position. 

 

2. FX2 hardware interface 

For proper utilization of the FX2 controller, an external 24 MHz parallel resonant crystal drives 

the on-chip electronics. For the USB connections, two resistances drop the output and input 

(USB+, USB-) line voltages. External supply to ground capacitances provide noise reduction to 
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the IC. External ports are driven from outputs and input pins. A 3.3 voltage regulator converts 

the 5V supply for proper supply voltage to the FX2 chip. A schematic diagram of this interface is 

shown in Figure 2. 

 

 

Figure 2. FX2 Hardware Interface 

 

3. SDLC Layout 

The USC IC is interfaced to the FX2 through the available address and data buses. Read (RD), 

Write (WR) and Chip Select Strobes (CS) are carried directly from the FX2 output pins. Power 

and Ground lines are carried from the 5V power source. Pull-up resistors and Pull down resistors 

are used on any required floating pins as described in the USC manual.  

 

Table 1 describes the pin connections required in the SDLC processor board. The interface to the 

USC is done strictly with command and data busses using built in data strobes for chip select, 

read and write functions. A schematic diagram of the SDLC circuit is shown in Fig. 3.  
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Figure 3. USC Layout 
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Table 1. USC Pin Interface 

SDLC PINOUT LAYOUT 

ZILOG USC 

 *************  

 D0 |-------| AD0 - Data 0 

 D1 |-------| AD1 - Data 1  

 D2 |-------| AD2 - Data 2 

 D3 |-------| AD3 - Data 3 

 D4 |-------| AD4 - Data 4 

 D5 |-------| AD5 - Data 5 

 D6 |-------| AD6 - Data 6 

 D7 |-------| AD7 - Data 7 

 A0 |-------| AD8 - U/L Selector 1 sets upper LSB 

 A1 |-------| AD9 - USC Address0 

 A2 |-------| AD10 - USC Address1 

 A3 |-------| AD11 - USC Address2 

 A4 |-------| AD12 - USC Address3 

 A5 |-------| AD13 - USC Address5 

 A6 |-------| D/C -Sets Data or Control 

 A7 |-------| A/B -Sets Channel A - Default Channel A 

 RD |-------| RD -Read 

 WR |-------| WR -Write 

 CS |-------| CS -Chip Select, Activated high for Bus Transfers 

 A15 |-------| CSnew -Chip Select, option2 

 *************** 

 

 

4. Parts List  

A complete list of the parts needed for the SDLC CID microcontroller board is shown in Table 2 

along with estimated prices and suppliers. 
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Table 2. SDLC CID Parts List 

Part Manufacturer Product Codes    Price 

Circuit Board QTC Circuits        $ 50.00  

Cypress EZ-USB microcontroller Cypress AN2131QC 428-1307-ND   $ 10.53  

12 MHz Clock ECE Inc. OECS-2200B-120 XC269-ND1   $ 2.64  

3.3 V Voltage Regulator Linear Technology LT1121CN8-3.3 LT1121CN8-3.3-ND 1  $ 2.75  

3 to 8 decoder Philips Electronics 74HCT238      $ -  

Octal Transceiver Philips Electronics 74HCT245      $ -  

EPROM 8X 32k ST Microelectronics M27C256B-100DC     $ -  

Octal 3 state Transceiver Texas Instruments SN74HC245N 296-1584-5-ND   $ 0.53  

D-Type Transparent Latch Texas Instruments SN74HC245N 296-1596-5-ND   $ 0.53  

D Flip Flop with 3 state Texas Instruments SN74HC245N 296-1598-5-ND   $ 0.53  

USC Zilog        $ -  

RS485 Transscievers Texas Instruments SN75LBC180AN 296-6881-5-ND   $ 2.36  

Conn PLCC Socket 68 Pos. thru Hole 940-99-068-24-000000ED80026-ND  $ 0.91 

 

C. FIRMWARE 

The firmware for the SDLC CID is modified from the original CIDII firmware with changes to 

convert to the FX2 IC and additional code to interface with the USC transceiver. 

 

The source code file USC.c contains necessary functions to write, read and initialize the USC 

chip in the desired mode described in the National Electric Manufacturers Association (NEMA) 

TS2 standard documentation. USC.h contains all USC bit descriptions and constants needed to 

set up and communicate with the serial controller. 
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Table 3. USC Mode Settings 

 

 BYTE CMRMODE_L = 0x06 
 BYTE CMRMODE_H = 0x06 
 BYTE CCARMODE_L = 0x00  
 BYTE CCARMODE_H = 0x00  
 BYTE CCSRMODE_L = 0x00 
 BYTE CCSRMODE_H = 0x00  
 BYTE CMCR_L = 0x09 
 BYTE CMCR_H = 0x00  
 BYTE RMR_L = 0x02 
 BYTE RMR_H = 0x00 
 BYTE TMR_L = 0x02 
 BYTE TMR_H = 0x00  
 BYTE IOCR_L = 0x08 
 BYTE IOCR_H = 0x00;  

 

For a description of the microcontroller operation refer to the FX2 manual, which is available in 

the docs folder as well as online at the following URL: 

www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf.  

 

Table 4 lists the source code needed for the SDLC CID and descriptions of each of the files. 

 

Table 4. Firmware Source Code 

Filename Version Description 
Fw.c 1.1 Basic USB operation 
cid.c 1.1 Basic CID operation 
cid.h 1.1 CID constants 
Dscr.h 1.1 USB Descriptor Table 
Misc.c 1.1 Various CID functions 
Periph.c 1.1 Serial/USB Communications 
Periph.h 1.1 Constants 
USC.c 1.1 USC functions 
USC.h 1.1 USC constants/addresses 
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D. SOFTWARE 

The CID PC software applications will require several modifications. First, the USB 

communication mode between the PC and CID will need to changed. The original CID II 

software suite performed PC to CID communication using isochronous USB communication. 

However, this mode of does not have sufficient bandwidth for SLDDC operation. Instead, bulk 

mode transfers are required to perform real-time hardware in the loop simulation. Since the 

guaranteed timing of the isochronous mode operation is not available, it is important to ensure 

that there are no other data intensive devices using the USB interface on the PC other than CIDs.  

 

A bulk read of the SDLC USC is done with a 0x00 write. A bulk write to the SDLC USC is done 

with a 0x01 write, followed by the bits desired to be written as described in the protocol shown 

in Table 5. The protocol used for transfers between the CID and SDLC is described in Tables 5 

and 6. 

 

Second, the CID software applications will require modification to account for the additional 

inputs and outputs available through the use SDLC communication. This will be most noticable 

with the suitcase tester application. 

E. SET-UP 

1. Setting up the TS2 traffic controller is SDLC mode 

Follow instructions in traffic controller users manual. 

 

2. Setting up and connecting the SDLC CID 

• Remove the original CID microcontroller board from the CID by gently pulling upwards 

on both edges of the board. Be sure to not touch any electronics while doing so.  

• Into the empty slot, insert the SDLC CID microcontroller board. The parts on the board 

should be visible from the front of the CID and the SDLC CID serial board (15 pin Sub D 

connector) will be on the right edge of the CID. 

• Ensure the CID has attached power cable by checking that the C connector to the traffic 

controller is connected. 
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• To check that the new board is connected properly switch on the rear power connection 

on the CID to on. The front L’s on the CID should flash left to right. Now turn the power 

switch back to the off position. To put the CID into SDLC mode, switch the side SDLC 

switch on the new board to the down position. 

 

3. Connecting to the PC and hardware testing 

• Connect a USB cable to the rear of the CID to an available USB slot on the PC. 

• Upon connection, the PC should make its standard enumeration sound and a message on 

the PC should pop up on the left side of the screen that shows the hardware is now 

available. If not follow instructions on installing SDLC CID drivers. 

 

4. Run application software  

Follow normal CID software operation procedure. 

 

F. CONCLUSION 

A final version of the modifications to CID to allow SDLC communication between the CID and 

the traffic controller has been presented. The hardware, firmware and software design has been 

described. 
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Table 5. CID to PC Messages 

 
Byte 
# 

Bit 
# Function  

Byte 
# Bit # Function 

 0 Load Switch 13 Red +   0 System Special Function 1 
 1 Load Switch 13 Red -   1 System Special Function 2 
 2 Load Switch 13 Yellow +   2 System Special Function 3 
 3 Load Switch 13 Yellow -   3 System Special Function 4 
 4 Load Switch 13 Green +   4 0 
 5 Load Switch 13 Green -   5 0 

CID to PC message -- This is the message that updates the PC with the TC 
outputs.  To initiate this transfer, the PC must send the command byte 0x01 
via BULK ENDPOINT OUT1 to the CID and then read BULK ENDPOINT 
IN1 for this message. 

 6 Load Switch 14 Red +   6 0 
Byte 
# Bit # Function   

Byte 
# Bit # Function  

10 

7 Load Switch 14 Red -   

16 

7 0 
0 CID Number Bit 0  0 Load Switch 6 Yellow +  0 Load Switch 14 Yellow +   0 Status Bit A Ring 1 
1 CID Number Bit 1  1 Load Switch 6 Yellow -  1 Load Switch 14 Yellow -   1 Status Bit B Ring 1 
2 CID Number Bit 2  2 Load Switch 6 Green +  2 Load Switch 14 Green +   2 Status Bit C Ring 1 
3 CID Number Bit 3  3 Load Switch 6 Green -  3 Load Switch 14 Green -   3 Status Bit A Ring 2 
4 CID Number Bit 4  4 Load Switch 7 Red +  4 Load Switch 15 Red +   4 Status Bit B Ring 2 
5 CID Number Bit 5  5 Load Switch 7 Red -  5 Load Switch 15 Red -   5 Status Bit C Ring 2 
6 CID Number Bit 6  6 Load Switch 7 Yellow +  6 Load Switch 15 Yellow +   6 0 

0 

7 CID Number Bit 7  

5 

7 Load Switch 7 Yellow -  

11 

7 Load Switch 15 Yellow -   

17 

7 0 
0 Load Switch 1 Red +  0 Load Switch 7 Green +  0 Load Switch 15 Green +   0 Phase 1 Phase On 
1 Load Switch 1 Red -  1 Load Switch 7 Green -  1 Load Switch 15 Green -   1 Phase 2 Phase On 
2 Load Switch 1 Yellow +  2 Load Switch 8 Red +  2 Load Switch 16 Red +   2 Phase 3 Phase On 
3 Load Switch 1 Yellow -  3 Load Switch 8 Red -  3 Load Switch 16 Red -   3 Phase 4 Phase On 
4 Load Switch 1 Green +  4 Load Switch 8 Yellow +  4 Load Switch 16 Yellow +   4 Phase 5 Phase On 
5 Load Switch 1 Green -  5 Load Switch 8 Yellow -  5 Load Switch 16 Yellow -   5 Phase 6 Phase On 
6 Load Switch 2 Red +  6 Load Switch 8 Green +  6 Load Switch 16 Green +   6 Phase 7 Phase On 

1 

7 Load Switch 2 Red -  

6 

7 Load Switch 8 Green -  

12 

7 Load Switch 16 Green -   

18 

7 Phase 8 Phase On 
0 Load Switch 2 Yellow +  0 Load Switch 9 Red +  0 TBC Auxiliary 1   0 Phase 1 Phase Next 
1 Load Switch 2 Yellow -  1 Load Switch 9 Red -  1 TBC Auxiliary 2   1 Phase 2 Phase Next 
2 Load Switch 2 Green +  2 Load Switch 9 Yellow +  2 Preempt 1 Status   2 Phase 3 Phase Next 
3 Load Switch 2 Green -  3 Load Switch 9 Yellow -  3 Preempt 2 Status   3 Phase 4 Phase Next 
4 Load Switch 3 Red +  4 Load Switch 9 Green +  4 0   4 Phase 5 Phase Next 
5 Load Switch 3 Red -  5 Load Switch 9 Green -  5 0   5 Phase 6 Phase Next 
6 Load Switch 3 Yellow +  6 Load Switch 10 Red +  6 0   6 Phase 7 Phase Next 

2 

7 Load Switch 3 Yellow -  

7 

7 Load Switch 10 Red -  

13 

7 0   

19 

7 0 
0 Load Switch 3 Green +  0 Load Switch 10 Yellow +  0 TBC Auxiliary 3   0 Phase 8 Phase Next 
1 Load Switch 3 Green -  1 Load Switch 10 Yellow -  1 Free/Coord Status   1 Phase 1 Check 
2 Load Switch 4 Red +  2 Load Switch 10 Green +  2 Preempt 3 Status   2 Phase 2 Check 
3 Load Switch 4 Red -  3 Load Switch 10 Green -  3 Preempt 4 Status   3 Phase 3 Check 

3 

4 Load Switch 4 Yellow +  

8 

4 Load Switch 11 Red +  

14 

4 Preempt 5 Status   

20 

4 Phase 4 Check 
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5 Load Switch 4 Yellow -  5 Load Switch 11 Red -  5 Preempt 6 Status   5 Phase 5 Check 
6 Load Switch 4 Green +  6 Load Switch 11 Yellow +  6 0   6 Phase 6 Check 
7 Load Switch 4 Green -  7 Load Switch 11 Yellow -  7 0   7 Phase 7 Check 
0 Load Switch 5 Red +  0 Load Switch 11 Green +  0 Timing Plan A  0 Phase 8 Check 
1 Load Switch 5 Red -  1 Load Switch 11 Green -  1 Timing Plan B  1 0 
2 Load Switch 5 Yellow +  2 Load Switch 12 Red +  2 Timing Plan C  2 0 
3 Load Switch 5 Yellow -  3 Load Switch 12 Red -  3 Timing Plan D  3 0 
4 Load Switch 5 Green +  4 Load Switch 12 Yellow +  4 Offset 1  4 0 
5 Load Switch 5 Green -  5 Load Switch 12 Yellow -  5 Offset 2  5 0 
6 Load Switch 6 Red +  6 Load Switch 12 Green +  6 Offset 3  6 0 

4 

7 Load Switch 6 Red -  

9 

7 Load Switch 12 Green -  

15 

7 Automatic Flash Status  

21 

7 0 

 
 

Table 6. PC To CID Messages 

 Byte Bit # Function  Byte # Bit # Function  Byte # Bit # Function 

 0 Test B   0 
Pedestrian 
Detector 5  0 0 

 1 Automatic Flash   1 
Pedestrian 
Detector 6  1 Address Bit 0 

 2 Dimming Enable   2 
Pedestrian 
Detector 7  2 Address Bit 1 

 3 
Manual Control 
Enable   3 

Pedestrian 
Detector 8  3 Address Bit 2 

 4 Interval Advance   4 0  4 Address Bit 3 

 5 
External Minimum 
Recall   5 0  5 Address Bit 4 

PC to CID Message -- This message is sent to the CID 
via a bulk transfer on Endpoint 1.  A command byte of 
0 is the first byte in this message to let the CID know 
that this is an input update.  This makes the total size 25 
bytes for this message. 

 6 External Start   6 0  6 0 
Byte  Bit # Function   Byte  Bit # Function  

10 

7 TBC On Line   

16 

7 0  

22 

7 0 

0 0  0 
Detector 33 
Call Status  0 Stop Time Ring 1   0 0  0 

Phase 1 Pedestrian 
Omit 

1 0  1 
Detector 34 
Call Status  1 Stop Time Ring 2   1 0  1 

Phase 2 Pedestrian 
Omit 

2 0  2 
Detector 35 
Call Status  2 

Max II Selection 
Ring 1   2 0  2 

Phase 3 Pedestrian 
Omit 

3 0  3 
Detector 36 
Call Status  3 

Max II Selection 
Ring 2   3 0  3 

Phase 4 Pedestrian 
Omit 

4 0  4 
Detector 37 
Call Status  4 Force Off Ring 1   4 0  4 

Phase 5 Pedestrian 
Omit 

5 0  5 
Detector 38 
Call Status  5 Force Off Ring 2   5 0  5 

Phase 6 Pedestrian 
Omit  

0 

6 0  

5 

6 
Detector 39 
Call Status  

11 

6 Call to NA 1   

17 

6 
Red Rest 
Ring 1  

23 

6 
Phase 7 Pedestrian 
Omit 
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7 0  7 
Detector 40 
Call Status  7 

Walk Rest 
Modifier   7 

Red Rest 
Ring 2  7 

Phase 8 Pedestrian 
Omit 

0 
Detector 1 Call 
Status  0 

Detector 41 
Call Status  0 

Pedestrian 
Detector 1   0 

Omit Red 
Clear Ring 1  0 Offset 1 

1 
Detector 2 Call 
Status  1 

Detector 42 
Call Status  1 

Pedestrian 
Detector 2   1 

Omit Red 
Clear Ring 2  1 Offset 2 

2 
Detector 3 Call 
Status  2 

Detector 43 
Call Status  2 

Pedestrian 
Detector 3   2 

Pedestrian 
Recycle Ring 
1  2 Offset 3 

3 
Detector 4 Call 
Status  3 

Detector 44 
Call Status  3 

Pedestrian 
Detector 4   3 

Pedestrian 
Recycle Ring 
2  3 

4 
Detector 5 Call 
Status  4 

Detector 45 
Call Status  4 0   4 

Alternate 
Sequence A  4 0 

5 
Detector 6 Call 
Status  5 

Detector 46 
Call Status  5 0   5 

Alternate 
Sequence B  5 0 

6 
Detector 7 Call 
Status  6 

Detector 47 
Call Status  6 0   6 

Alternate 
Sequence C  6 0 

1 

7 
Detector 8 Call 
Status  

6 

7 
Detector 48 
Call Status  

12 

7 0   

18 

7 
Alternate 
Sequence D  

24 

7 0 

0 
Detector 9 Call 
Status  0 

Detector 49 
Call Status  0 0   0 

Phase 1 
Omit     

1 
Detector 10 Call 
Status  1 

Detector 50 
Call Status  1 0   1 

Phase 2 
Omit     

2 
Detector 11 Call 
Status  2 

Detector 51 
Call Status  2 0   2 

Phase 3 
Omit     

3 
Detector 12 Call 
Status  3 

Detector 52 
Call Status  3 0   3 

Phase 4 
Omit     

4 
Detector 13 Call 
Status  4 

Detector 53 
Call Status  4 0   4 

Phase 5 
Omit     

5 
Detector 14 Call 
Status  5 

Detector 54 
Call Status  5 0   5 

Phase 6 
Omit     

6 
Detector 15 Call 
Status  6 

Detector 55 
Call Status  6 0   6 

Phase 7 
Omit     

2 

7 
Detector 16 Call 
Status  

7 

7 
Detector 56 
Call Status  

13 

7 
Preempt Detector 
3   

19 

7 
Phase 8 
Omit     

0 
Detector 17 Call 
Status  0 

Detector 57 
Call Status  0 

Preempt Detector 
4   0 

Phase 1 
Hold     

1 
Detector 18 Call 
Status  1 

Detector 58 
Call Status  1 

Preempt Detector 
5   1 

Phase 2 
Hold     

2 
Detector 19 Call 
Status  2 

Detector 59 
Call Status  2 

Preempt Detector 
6   2 

Phase 3 
Hold     

3 
Detector 20 Call 
Status  3 

Detector 60 
Call Status  3 Call to NA II   3 

Phase 4 
Hold     

3 

4 
Detector 21 Call 
Status  

8 

4 
Detector 61 
Call Status  

14 

4 0   

20 

4 
Phase 5 
Hold     



 

 

Expanded 

5 
Detector 22 Call 
Status  5 

Detector 62 
Call Status  5 0   5 

Phase 6 
Hold     

6 
Detector 23 Call 
Status  6 

Detector 63 
Call Status  6 0   6 

Phase 7 
Hold     

7 
Detector 24 Call 
Status  7 

Detector 64 
Call Status  7 0   7 

Phase 8 
Hold     

0 
Detector 25 Call 
Status  0 0  0 

Inhibit Max Term 
Ring 1  0 

Timing Plan 
A     

1 
Detector 26 Call 
Status  1 0  1 

Inhibit Max Term 
Ring 2  1 

Timing Plan 
B     

2 
Detector 27 Call 
Status  2 0  2 

Local Flash 
Status  2 

Timing Plan 
C     

3 
Detector 28 Call 
Status  3 0  3 

MMU Flash 
Status  3 

Timing Plan 
D     

4 
Detector 29 Call 
Status  4 0  4 Alarm 1  4 0     

5 
Detector 30 Call 
Status  5 

Preempt 
Detector 1  5 Alarm 2  5 0     

6 
Detector 31 Call 
Status  6 

Preempt 
Detector 2  6 Free (No Coord)  6 0     

4 

7 
Detector 32 Call 
Status  

9 

7 Test A  

15 

7 Test C  

21 

7 0     
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PART 2: REAL-TIME PLAYBACK HARDWARE-IN-THE-LOOP SIMULATION OF 
TRAFFIC SYSTEMS 

A. INTRODUCTION *

Traffic signals are controlled by traffic controllers, embedded computers that set light scheduling 

according to a programmed algorithm. Traffic controllers vary widely in intelligence; they may 

implement simple fixed-time scheduling systems, more complex traffic-actuated control, or 

advanced interconnected control systems. 

 

A traffic controller’s control outputs are called phase indications; they show allowed movement 

for vehicles or pedestrians in a certain path. Traffic-actuated controllers receive inputs from 

traffic detection sensors (usually inductive loops) and from pedestrian call buttons. Phase 

decisions in an actuated controller are made based on metrics extracted from the input data, 

including the presence of waiting vehicles, vehicle speed, and traffic volume or density [1]. 

 

Traffic engineers frequently use computer “microscopic simulation” tools to design and tune 

traffic systems. A micro-simulator is a software program that models the behavior of individual 

vehicles in the system. Common simulators include CORSIM (CORridor SIMmulation), 

developed by the Federal Highway Administration as part of its Traffic Software Integrated 

Systems Package [2], and VISSIM (a German acronym; the name means roughly “traffic in 

towns simulation”), developed commercially by Innovative Transportation Concepts, Inc. [3]; 

other commercial simulators are also available, but are less widely used at present. These 

simulators typically provide measures of effectiveness (MOE) for the simulated system, such as 

total vehicle delay, stopped delay, and queue lengths; detailed run results; and an animation of 

the system as it is being simulated. Simulations are based on stochastic vehicle models, but are 

repeatable for a given random seed. 

                                                 
*This section consists of the following paper that was presented at the 32nd Annual Conference of 

the IEEE Industrial Electronics Society., November 6-10, 2005: E. M. Suwal, B. K. Johnson, H. 

L. Hess, and J. C. Fisher, “Real-Time Playback Hardware-in-the-Loop Simulation of Traffic 

Systems,” IECON 2005, pp. 383-388. 
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B. LIMITATIONS IN MICROSCOPIC SIMULATIONS 

Traffic signals and traffic controllers are devices used to control and regulate the flow of traffic 

at intersections. Optimal traffic signal timing is developed and tested through a variety of traffic 

optimization and simulation models that simulate the traffic behavior and emulate the possible 

actions of the traffic controller. With advances in traffic controller computing power and control 

logic, the issue of whether the generic simulation model controller accurately emulates the actual 

performance of the field controller has cast considerable doubt on the output of the simulation 

models. Continuing changes in the control algorithms used in the traffic controllers and the 

propriety maintained by their manufacturers limit the accuracy of device-specific models [4, 5]. 

 

1. Hardware-in-the-Loop Simulation 

In a typical simulation, software such as CORSIM simulates a real-world traffic network by 

moving individual vehicles across a combined surface street and freeway network using accepted 

vehicle and driver behavior models and simulating various traffic control devices. The software 

contains algorithms to both track vehicles through a prescribed highway network and to 

implement a coordinated actuated signal system [6].  

 

Hardware-in-the-loop simulation (HILS) is different in that, instead of having CORSIM simulate 

controller features, the CORSIM traffic model only simulates the vehicle detector signals. The 

control strategy is run on an actual traffic controller that will be used in the field. A controller 

interface device (CID) provides the real-time linkage between CORSIM and the traffic signal 

controller as shown in Fig. 1 [4, 5, 6]. The CID makes hardware in the loop simulation possible 

[1]. 

 

Figure 1: Hardware-in-the-loop simulation with a CID. 

 

The CID is typically an embedded controller that relays detector information from the simulation 

software to the traffic controller, and returns phase information from the traffic controller to the 
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simulation software. In this paper, we examine the accuracy of HILS simulations performed 

using the “CID II,” a USB-based interface device developed at the University of Idaho; the 

methodology is valid for all similar devices. 

 

2. CID Communication Protocol and Latencies 

The USB protocol allows up to 127 devices to be connected to a personal computer. Several 

different data transfer modes are provided to support different types of devices. The CID uses the 

isochronous transfer mode, which guarantees bounded transfer latency [7]. 

 

USB transfers occur in one millisecond long “frames.” This provides a very convenient timing 

reference for the CID II. According to specification, it should be possible to communicate with 

around 40 CIDs in a single frame using the isochronous transfer method. In practice, it is 

difficult, if not impossible, to do so. The available USB driver can only write data to or read data 

from one device per function call, and both read and write calls actually require 6 ms to execute 

on the computer [5]. The driver can average one transfer per frame, if it is passed a number of 

packets of data for a particular device, but this is not useful for the purpose of hardware-in-the-

loop simulations, in which there is a relatively large time gap between each packet. 

 

In a simulation with only a few CIDs, this should be insignificant, since the simulation time step 

is usually 1000 ms long. However, in simulations with tens of CIDs, this delay could approach 

the size of the time-step.  

 

In general, a one time-step timing error does not seem significant; in most simulation systems, 

time step frequency is chosen well above the maximum transient frequencies. However, there is 

doubt as to whether a 1000 ms time step length is small enough for advanced traffic control 

systems; some commercial simulators are moving towards either reducing the size of the time 

step (for instance to 100 ms) or allowing the user to set the step size. 

The two most relevant studies of CID timing issues were undertaken at Louisiana State 

University with a different type of CID [4], and jointly at the University of Idaho and Purdue 

University with NIATT’s CID II [5]. Results (MOEs) from a number of hardware-in-the-loop 

simulations for both fixed-time and traffic-actuated controllers were compared to results from 

Expanded Controller Interface Device Input/Output Capabilities 17 
and CID Software Coordination 



 

 

“normal,” software-only, simulations and found to have no statistically significant deviation. 

However, this type of study is not as satisfactory in general as might be hoped: it can only 

compare results for traffic controllers that can be adequately modeled in software; in fact, there is 

little need to use HIL simulation with such controllers. Because there is by definition no easy 

way to model the operation of traffic controllers with proprietary or highly complex algorithms, 

this evaluation method cannot determine the impact of the CID interface on them. 

 

3. Real-Time Playback 

Real-time playback (RTPB) is a discrete-time simulation technique developed for systems in 

which it is difficult or impossible to “close the loop” between computer simulation and hardware 

testing—for instance, if the simulation is unable to be run in real time. RTPB simulators have 

been used by the electric power industry for some time. They provide a cheap alternative to real-

time digital simulators (which can cost hundreds of thousands of dollars), in which a simulation 

actually interacts with the tested system in real-time. RTPB simulators are used principally for 

testing numerical relays [8], but they have also been used for testing other types of hardware (for 

instance, fault locators [9]) with fast response times that preclude analog testing. More generally, 

RTPB can be used to create a quasi-hardware-in-the-loop simulation that is real-time to the limits 

of a playback device. Interaction with the physical system is independent of both simulation 

speed and communication latency between the simulator and the hardware. 

 

The simulation procedure is as follows: 

 

1. The initial state of the physical system’s outputs is read from the playback device. 

2. The computer simulator is started and run for a fixed amount of time, with the simulated 

system’s output in the simulation fixed at its initial state. The simulation’s inputs to the 

system are recorded. 

3. The simulated system inputs are transmitted to the playback device, and “played” in real-

time until a change is observed in the system’s outputs. 

4. The computer simulator is run again for a fixed amount of time past the previously 

observed output change. The output change is added to the simulated system’s behavior. 

The simulation’s inputs to the system are recorded. 
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Steps 3 and 4 are repeated, acquiring a new system output change each time, as long as desired. 

Fig. 2 provides a graphical depiction of the process. The simulator generates inputs to be applied 

to the physical system. When new output events are found from the playback process, the 

simulator must be invoked again to generate a new sequence of inputs given the changed system-

state. Of course, the system must be in the same internal state at the beginning of each playback 

run to insure consistency from one playback run to another.  

 

 
 

Figure 2. Real-time playback 

 

4. Implementation 

The RTPB simulator makes use of the existing CID II hardware, but with modified firmware. 

The VISSIM traffic simulator was used because of its capability of running with user-selected 

time step sizes, which allows testing for the impact of time step size as well as latency. A custom 

control program written in C++ manages the entire RTPB process. 

 

Four principle modifications were made to the CID firmware: 

1. Ordinarily, the simulation produces detector information every second, which includes 

the timing information. In the RTPB simulation, the timing information is read by the 
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control program, which then creates a new set of detector information without the timing 

data every 100 milliseconds. The timing resolution is thus traded-off to keep the size of 

detector data reasonable. 

2. A queuing system was added, allowing the CID to store output data for a number of time 

steps in the future. This removed the possibility of error in the time step length. 

3. The CID was programmed to keep track of input (phase) changes. Specifically, the 

modified CID can record the value and time of the Nth input change after playback has 

begun (where N can be set by a command over USB). 

4. A four-byte simulation clock, incrementing every millisecond, was added to provide a 

timing base. Functions were added to enable multiple CIDs to synchronize their clocks 

prior to simulation. 

 

The CID’s output data queue length can be set using the control program. Each element in the 

queue represents a time step and each time step is 100 ms long. The timing clock is four bytes 

long, but for convenience the least-significant byte rolls over at 100. This allows up to 4605.9 

hours of playback before the clock rolls over. 

 

A global “mode” byte allows the CID to keep track of its state from one start-of-frame interrupt 

to another. These “modes” allows the CID to function differently to make the playback work 

efficiently. The “mode” is controlled by command from the RTPB control program. 

For RTPB to work correctly, all the CIDs should be synchronized, that is, the timing clock 

implemented in firmware should be synchronized so that the CID detecting the Nth change first 

can be correctly determined.  

 

As it was mentioned before, all the traffic controllers need to be brought to the same state at the 

start of every simulation and playback process. To achieve this, a set of predetermined detector 

outputs are fed to the traffic controllers for a sufficient time period to bring them to a known and 

stable state. 

5. Operation 

A control program, running on the simulation computer, handles the processes of running the 

traffic simulator. It runs the playback operation passing data (phase states and detector pulses) 
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back and forth, and determining when the simulation has completed or stalled. The program was 

written in C++ as a Windows console program, meaning that it lacks a graphical interface but 

can still access Microsoft Windows API functions. Fig. 3 illustrates the structure of the RTPB 

system. 

 

 
Figure 3. Structure of the RTPB system 

 

In the control program, a C++ object is instantiated for each CID. The class provides methods for 

sending and receiving data, “shortcut” functions for common CID commands, and data storage 

arrays for both phase and traffic detector data. When the associated traffic controller’s initial 

phase state is read, it is copied through the CID’s entire phase storage array. Then a member 

function is called to dump the array to a file to be read by VISSIM.  

 

The control program’s operation can be divided loosely into three steps: initializing the 

simulation, running the playback loop, and generating results in a useful format. The control 

program process is described step by step as follows: 

 

1. The control program first reads a settings file that contains information such as the input 

file for the simulation, location of the simulator executable file, the number of CIDs that 

will be used and the length of the playback simulation. 
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2. The traffic controllers are brought to a known state before starting the simulations. The 

control program sends out a sequence of detector calls to bring the traffic controllers to 

the same known state at the start of every simulation.  

3. The initial phase states are read from the traffic controllers before starting the simulation. 

The initial phase states have to be the same every time for RTPB simulation to work. 

4. The Simulator is executed using a system command in the control program that 

automatically loads the input file and starts the simulation, at the end of which, the 

program is terminated. VISSIM spawns an interface program for each CID that reads 

phase data from a phase file for the corresponding CID. 

5. Before the simulator is terminated, the interface program writes the detector data to 

detector files for the corresponding CID. The format of the data is the same as that in 

HILS. 

6. The control program processes the detector data before it is sent to the CIDs. Since the 

timing data is not sent, the resolution of the data is increased for a more accurate 

playback.  

7. The processed detector data is transferred to the corresponding CIDs for playback. 

8. The CIDs are synchronized before playback using USB Start-of-Frame (SOF) packet’s 

frame number so that all the CIDs start playback at exactly the same time.  

9. The control program then appends newly detected phase states to the phase files for the 

CIDs. 

10. The process is repeated from step 2 until simulation of desired length is completed. 
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6. Results 

Table 1   Comparison of HILS and RTPB Simulation Output Data 

 

HILS RTPB 

Time of change SCJ Phase color Time of change SCJ Phase color 
1 8 green 1 8 green 
1 7 green 1 7 green 
1 6 green 1 6 green 
1 5 green 1 5 green 
1 4 green 1 4 green 
1 3 green 1 3 green 
1 2 green 1 2 green 
1 1 green 1 1 green 
9 7 amber 9 7 amber 
12 7 red 12 7 red 
14 7 green 14 7 green 
16 3 amber 16 3 amber 

 

The RTPB process has been tested with simulations with CID based controllers at one, three and 

eight intersections. VISSIM can generate an output file recording all the phase changes in the 

intersections and the simulation time when the phase change occurs. This output file was used to 

compare the results of hardware-in-the-loop and RTPB simulations. A portion of the output file 

for an eight-intersection simulation is shown in Table I where SCJ stands for “Signal Controlled 

Junction.” Since the RTPB simulations take much longer to simulate the same length of 

simulation than HILS, only 100 seconds of simulation was attempted for the tests. With one- and 

three- intersection simulations, the results of HILS and RTPB were found to be identical for the 

length of simulation. For eight-intersection simulation, few discrepancies were observed between 

RTPB and HIL simulations. The discrepancies were mostly related to one signal controlled 

junction and are due to the CID in the RTPB process detecting the phase change on that junction 

at the wrong time. For example, in one of the test simulations, SCJ 4 detects phase change from 

green to amber after 48 seconds into the simulation and a phase change from amber to red 54 

seconds into the simulation. This is incorrect since the traffic controllers are setup with a fixed 

amber hold time of 3 seconds. The correct change would have occurred after 51 seconds of 

simulation. The source of this error has yet to be determined but is most likely in the way the 

firmware clock is implemented. 
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B. CONCLUSION 

A procedure to run hardware-in-the-loop simulation without the affect of communication latency 

has been designed. This procedure can be used to test the accuracy of hardware-in-the-loop 

simulations and test the effects of time-step size of the simulation, either in addition to or 

independent of communication latency. Use of the RTPB process has shown that the HILS 

process is not creating artificial timing errors in the simulation results. 
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