

EXPANDED CONTROLLER INTERFACE DEVICE

INPUT/OUTPUT CAPABILITIES AND

CID SOFTWARE COORDINATION

Final Report
KLK235
N07-04

National Institute for Advanced Transportation Technology
University of Idaho

Ahmed Abdel-Rahim; Brian Johnson
Zhen Li; Eugene Bordenkircher; Joel Alberts; Sanjeev Giri; Mark Hutchinson

March 2007

DISCLAIMER

The contents of this report reflect the views of the authors,

who are responsible for the facts and the accuracy of the

information presented herein. This document is disseminated

under the sponsorship of the Department of Transportation,

University Transportation Centers Program, in the interest of

information exchange. The U.S. Government assumes no

liability for the contents or use thereof.

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

5. Report Date

December 2006

4. Title and Subtitle

Expanded Controller Interface Device Input/Output Capabilities and CID Software

Coordination

6. Performing Organization Code

KLK235

5.Author(s)

Ahmed Abdel-Rahim; Brian Johnson with Zhen Li, Eugene Bordenkircher, Joel

Alberts, Sanjeev Giri and Mark Hutchinson

8. Performing Organization Report No.

N07-04

9. Performing Organization Name and Address

National Institute for Advanced Transportation Technology

University of Idaho

10. Work Unit No. (TRAIS)

 PO Box 440901; 115 Engineering Physics Building

 Moscow, ID 838440901

11. Contract or Grant No.

DTRS98-G-0027

12. Sponsoring Agency Name and Address

US Department of Transportation

Research and Special Programs Administration

13. Type of Report and Period Covered

Final Report: August 2004-December

2005

400 7th Street SW

Washington, DC 20509-0001

 14. Sponsoring Agency Code

USDOT/RSPA/DIR-1

Supplementary Notes:

16. Abstract

The controller interface device (CID) is the result of several years of hardware and software development by NIATT. This project
had two objectives: the first was to expand the capability of the CID for applications where the number of input/output
connections limit performance. The second objective was to investigate a new application area for CID technology, developing
and testing a prototype to use the CID and CORSIM simulation to test traffic controller compliance to NTCIP communication
standards.
This final report is made in two parts. The first describes the development of a synchronous data link control (SDLC) interface
capability for the CID. The second part discusses the completion of the real-time playback system to test CID timing performance
introduced in and is presented in the form of a paper titled: “Real-Time Playback Hardware-in-the-Loop Simulation of Traffic
Systems,” presented at IECON 2005, 32nd Annual Conference of the IEEE Industrial Electronics Society. This paper discusses
the development of a software-controlled embedded system to evaluate the effect of communication latencies in hardware-in-the-
loop simulation of traffic systems. The tool uses the Controller Interface Device (CID) hardware developed for hardware-in-the-
loop simulation with modifications made to the firmware to support real-time playback (RTPB). RTPB simulators have been
used in power systems as a cheap alternative to real-time simulators. In some cases RTPB is the only possible simulation method.
This paper presents the application of RTPB to traffic simulations using actual traffic controller hardware.
17. Key Words

Hardware-in-the-loop simulation; traffic signal

controllers; traffic simulation; real-time control

18. Distribution Statement

Unrestricted; Document is available to the public through the National

Technical Information Service; Springfield, VT.

19. Security Classif. (of this report)

 Unclassified

20. Security Classif. (of this page)

 Unclassified

21. No. of Pages

22. Price

…

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

PART 1: SYNCHRONOUS DATA LINK CONTROL INTERFACE FOR INTERFACE FOR

CONTROLLER INTERFACE DEVICE TO TRAFFIC CONTROLLER COMMUNICATION 2

A. INTRODUCTION ... 2

B. HARDWARE... 3

C. FIRMWARE .. 7

D. SOFTWARE .. 9

E. SET-UP... 9

F. CONCLUSION... 10

PART 2: REAL-TIME PLAYBACK HARDWARE-IN-THE-LOOP SIMULATION OF

TRAFFIC SYSTEMS ... 15

A. INTRODUCTION .. 15

B. LIMITATIONS IN MICROSCOPIC SIMULATIONS... 16

B. CONCLUSION .. 24

C. REFERENCES... 25

Expanded Controller Interface Device Input/Output Capabilities i
and CID Software Coordination

EXECUTIVE SUMMARY

The controller interface device (CID) is the result of several years of hardware and software

development by NIATT. This project had two objectives: the first was to expand the capability

of the CID for applications where the number of input/output connections limit performance. The

second objective was to investigate a new application area for CID technology, developing and

testing a prototype to use the CID and CORSIM simulation to test traffic controller compliance

to NTCIP communication standards.

This final report is made in two parts. The first describes the development of a synchronous data

link control (SDLC) interface capability for the CID. The second part discusses the completion

of the real-time playback system to test CID timing performance introduced in and is presented

in the form of a paper titled: “Real-Time Playback Hardware-in-the-Loop Simulation of Traffic

Systems,” presented at IECON 2005, 32nd Annual Conference of the IEEE Industrial Electronics

Society. This paper discusses the development of a software-controlled embedded system to

evaluate the effect of communication latencies in hardware-in-the-loop simulation of traffic

systems. The tool uses the Controller Interface Device (CID) hardware developed for hardware-

in-the-loop simulation with modifications made to the firmware to support real-time playback

(RTPB). RTPB simulators have been used in power systems as a cheap alternative to real-time

simulators. In some cases RTPB is the only possible simulation method. This paper presents the

application of RTPB to traffic simulations using actual traffic controller hardware.

Expanded Controller Interface Device Input/Output Capabilities 1
and CID Software Coordination

PART 1: SYNCHRONOUS DATA LINK CONTROL INTERFACE FOR INTERFACE
FOR CONTROLLER INTERFACE DEVICE TO TRAFFIC CONTROLLER
COMMUNICATION

A. INTRODUCTION

The synchronous data link control (SDLC) controller interface device (CID) is an adaptation of

the original CID. The SDLC version replaces the original microcontroller board with a modified

board that incorporates the original board in addition to a connector that allows for SDLC

communication to TS/2 standard traffic controllers (see Fig. 1a and 1b). Neither the motherboard

nor the daughterboards need to be modified. The CID case will need an additional cut out for the

series port.

The benefit in using the new connector is that the SDLC link replaces over 80 wires with a single

nine-wire RJ-45 cable by using high speed serial communications. Also, the SDLC link has

additional features and modes that are not available in standard ABC type connectors for TS1

Controllers.

D-sub

Microcontroller
board

Figure 1a: SDLC microcontroller daughterboard compared to input, output and display

boards.

Expanded Controller Interface Device Input/Output Capabilities 2
and CID Software Coordination

Figure 1b. SDLC CID Circuit Board

B. HARDWARE

1. Revisions

The main revisions include a change to a newer microcontroller; the Cypress FX2. The Cypress

EZ- Universal Serial Bus (USB) AN2131 is now obsolete and the FX2 is an upgrade that allows

use of the faster USB 2.0 protocol to communicate with the PC.

The second main revision is the inclusion of the Zilog Universal Serial Controller or USC (part

number Z16C30) that is used for all SDLC communication processes such as error correction,

parity checks, and conversions from parallel to the correct serial bit rate. The integrated circuit

(IC) is highly adjustable however the firmware uses only the limited features needed to transfer

over the SDLC port.

In order to switch between original and SDLC modes a two position switch is available on the

right side of the microcontroller board. For SDLC mode the switch is the down position and for

original the switch must be pressed in the upward position.

2. FX2 hardware interface

For proper utilization of the FX2 controller, an external 24 MHz parallel resonant crystal drives

the on-chip electronics. For the USB connections, two resistances drop the output and input

(USB+, USB-) line voltages. External supply to ground capacitances provide noise reduction to

Expanded Controller Interface Device Input/Output Capabilities 3
and CID Software Coordination

the IC. External ports are driven from outputs and input pins. A 3.3 voltage regulator converts

the 5V supply for proper supply voltage to the FX2 chip. A schematic diagram of this interface is

shown in Figure 2.

Figure 2. FX2 Hardware Interface

3. SDLC Layout

The USC IC is interfaced to the FX2 through the available address and data buses. Read (RD),

Write (WR) and Chip Select Strobes (CS) are carried directly from the FX2 output pins. Power

and Ground lines are carried from the 5V power source. Pull-up resistors and Pull down resistors

are used on any required floating pins as described in the USC manual.

Table 1 describes the pin connections required in the SDLC processor board. The interface to the

USC is done strictly with command and data busses using built in data strobes for chip select,

read and write functions. A schematic diagram of the SDLC circuit is shown in Fig. 3.

Expanded Controller Interface Device Input/Output Capabilities 4
and CID Software Coordination

Figure 3. USC Layout

Expanded Controller Interface Device Input/Output Capabilities 5
and CID Software Coordination

Table 1. USC Pin Interface

SDLC PINOUT LAYOUT

ZILOG USC

 D0 |-------| AD0 - Data 0

 D1 |-------| AD1 - Data 1

 D2 |-------| AD2 - Data 2

 D3 |-------| AD3 - Data 3

 D4 |-------| AD4 - Data 4

 D5 |-------| AD5 - Data 5

 D6 |-------| AD6 - Data 6

 D7 |-------| AD7 - Data 7

 A0 |-------| AD8 - U/L Selector 1 sets upper LSB

 A1 |-------| AD9 - USC Address0

 A2 |-------| AD10 - USC Address1

 A3 |-------| AD11 - USC Address2

 A4 |-------| AD12 - USC Address3

 A5 |-------| AD13 - USC Address5

 A6 |-------| D/C -Sets Data or Control

 A7 |-------| A/B -Sets Channel A - Default Channel A

 RD |-------| RD -Read

 WR |-------| WR -Write

 CS |-------| CS -Chip Select, Activated high for Bus Transfers

 A15 |-------| CSnew -Chip Select, option2

4. Parts List

A complete list of the parts needed for the SDLC CID microcontroller board is shown in Table 2

along with estimated prices and suppliers.

Expanded Controller Interface Device Input/Output Capabilities 6
and CID Software Coordination

Table 2. SDLC CID Parts List

Part Manufacturer Product Codes Price

Circuit Board QTC Circuits $ 50.00

Cypress EZ-USB microcontroller Cypress AN2131QC 428-1307-ND $ 10.53

12 MHz Clock ECE Inc. OECS-2200B-120 XC269-ND1 $ 2.64

3.3 V Voltage Regulator Linear Technology LT1121CN8-3.3 LT1121CN8-3.3-ND 1 $ 2.75

3 to 8 decoder Philips Electronics 74HCT238 $ -

Octal Transceiver Philips Electronics 74HCT245 $ -

EPROM 8X 32k ST Microelectronics M27C256B-100DC $ -

Octal 3 state Transceiver Texas Instruments SN74HC245N 296-1584-5-ND $ 0.53

D-Type Transparent Latch Texas Instruments SN74HC245N 296-1596-5-ND $ 0.53

D Flip Flop with 3 state Texas Instruments SN74HC245N 296-1598-5-ND $ 0.53

USC Zilog $ -

RS485 Transscievers Texas Instruments SN75LBC180AN 296-6881-5-ND $ 2.36

Conn PLCC Socket 68 Pos. thru Hole 940-99-068-24-000000ED80026-ND $ 0.91

C. FIRMWARE

The firmware for the SDLC CID is modified from the original CIDII firmware with changes to

convert to the FX2 IC and additional code to interface with the USC transceiver.

The source code file USC.c contains necessary functions to write, read and initialize the USC

chip in the desired mode described in the National Electric Manufacturers Association (NEMA)

TS2 standard documentation. USC.h contains all USC bit descriptions and constants needed to

set up and communicate with the serial controller.

Expanded Controller Interface Device Input/Output Capabilities 7
and CID Software Coordination

Table 3. USC Mode Settings

 BYTE CMRMODE_L = 0x06
 BYTE CMRMODE_H = 0x06
 BYTE CCARMODE_L = 0x00
 BYTE CCARMODE_H = 0x00
 BYTE CCSRMODE_L = 0x00
 BYTE CCSRMODE_H = 0x00
 BYTE CMCR_L = 0x09
 BYTE CMCR_H = 0x00
 BYTE RMR_L = 0x02
 BYTE RMR_H = 0x00
 BYTE TMR_L = 0x02
 BYTE TMR_H = 0x00
 BYTE IOCR_L = 0x08
 BYTE IOCR_H = 0x00;

For a description of the microcontroller operation refer to the FX2 manual, which is available in

the docs folder as well as online at the following URL:

www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf.

Table 4 lists the source code needed for the SDLC CID and descriptions of each of the files.

Table 4. Firmware Source Code

Filename Version Description
Fw.c 1.1 Basic USB operation
cid.c 1.1 Basic CID operation
cid.h 1.1 CID constants
Dscr.h 1.1 USB Descriptor Table
Misc.c 1.1 Various CID functions
Periph.c 1.1 Serial/USB Communications
Periph.h 1.1 Constants
USC.c 1.1 USC functions
USC.h 1.1 USC constants/addresses

Expanded Controller Interface Device Input/Output Capabilities 8
and CID Software Coordination

http://www.keil.com/dd/docs/datashts/cypress/fx2_trm.pdf

D. SOFTWARE

The CID PC software applications will require several modifications. First, the USB

communication mode between the PC and CID will need to changed. The original CID II

software suite performed PC to CID communication using isochronous USB communication.

However, this mode of does not have sufficient bandwidth for SLDDC operation. Instead, bulk

mode transfers are required to perform real-time hardware in the loop simulation. Since the

guaranteed timing of the isochronous mode operation is not available, it is important to ensure

that there are no other data intensive devices using the USB interface on the PC other than CIDs.

A bulk read of the SDLC USC is done with a 0x00 write. A bulk write to the SDLC USC is done

with a 0x01 write, followed by the bits desired to be written as described in the protocol shown

in Table 5. The protocol used for transfers between the CID and SDLC is described in Tables 5

and 6.

Second, the CID software applications will require modification to account for the additional

inputs and outputs available through the use SDLC communication. This will be most noticable

with the suitcase tester application.

E. SET-UP

1. Setting up the TS2 traffic controller is SDLC mode

Follow instructions in traffic controller users manual.

2. Setting up and connecting the SDLC CID

• Remove the original CID microcontroller board from the CID by gently pulling upwards

on both edges of the board. Be sure to not touch any electronics while doing so.

• Into the empty slot, insert the SDLC CID microcontroller board. The parts on the board

should be visible from the front of the CID and the SDLC CID serial board (15 pin Sub D

connector) will be on the right edge of the CID.

• Ensure the CID has attached power cable by checking that the C connector to the traffic

controller is connected.

Expanded Controller Interface Device Input/Output Capabilities 9
and CID Software Coordination

Expanded Controller Interface Device Input/Output Capabilities 10
and CID Software Coordination

• To check that the new board is connected properly switch on the rear power connection

on the CID to on. The front L’s on the CID should flash left to right. Now turn the power

switch back to the off position. To put the CID into SDLC mode, switch the side SDLC

switch on the new board to the down position.

3. Connecting to the PC and hardware testing

• Connect a USB cable to the rear of the CID to an available USB slot on the PC.

• Upon connection, the PC should make its standard enumeration sound and a message on

the PC should pop up on the left side of the screen that shows the hardware is now

available. If not follow instructions on installing SDLC CID drivers.

4. Run application software

Follow normal CID software operation procedure.

F. CONCLUSION

A final version of the modifications to CID to allow SDLC communication between the CID and

the traffic controller has been presented. The hardware, firmware and software design has been

described.

Expanded Controller Interface Device Input/Output Capabilities 11
and CID Software Coordination

Table 5. CID to PC Messages

Byte

Bit
Function

Byte
Bit # Function

 0 Load Switch 13 Red + 0 System Special Function 1
 1 Load Switch 13 Red - 1 System Special Function 2
 2 Load Switch 13 Yellow + 2 System Special Function 3
 3 Load Switch 13 Yellow - 3 System Special Function 4
 4 Load Switch 13 Green + 4 0
 5 Load Switch 13 Green - 5 0

CID to PC message -- This is the message that updates the PC with the TC
outputs. To initiate this transfer, the PC must send the command byte 0x01
via BULK ENDPOINT OUT1 to the CID and then read BULK ENDPOINT
IN1 for this message.

 6 Load Switch 14 Red + 6 0
Byte
Bit # Function

Byte
Bit # Function

10

7 Load Switch 14 Red -

16

7 0
0 CID Number Bit 0 0 Load Switch 6 Yellow + 0 Load Switch 14 Yellow + 0 Status Bit A Ring 1
1 CID Number Bit 1 1 Load Switch 6 Yellow - 1 Load Switch 14 Yellow - 1 Status Bit B Ring 1
2 CID Number Bit 2 2 Load Switch 6 Green + 2 Load Switch 14 Green + 2 Status Bit C Ring 1
3 CID Number Bit 3 3 Load Switch 6 Green - 3 Load Switch 14 Green - 3 Status Bit A Ring 2
4 CID Number Bit 4 4 Load Switch 7 Red + 4 Load Switch 15 Red + 4 Status Bit B Ring 2
5 CID Number Bit 5 5 Load Switch 7 Red - 5 Load Switch 15 Red - 5 Status Bit C Ring 2
6 CID Number Bit 6 6 Load Switch 7 Yellow + 6 Load Switch 15 Yellow + 6 0

0

7 CID Number Bit 7

5

7 Load Switch 7 Yellow -

11

7 Load Switch 15 Yellow -

17

7 0
0 Load Switch 1 Red + 0 Load Switch 7 Green + 0 Load Switch 15 Green + 0 Phase 1 Phase On
1 Load Switch 1 Red - 1 Load Switch 7 Green - 1 Load Switch 15 Green - 1 Phase 2 Phase On
2 Load Switch 1 Yellow + 2 Load Switch 8 Red + 2 Load Switch 16 Red + 2 Phase 3 Phase On
3 Load Switch 1 Yellow - 3 Load Switch 8 Red - 3 Load Switch 16 Red - 3 Phase 4 Phase On
4 Load Switch 1 Green + 4 Load Switch 8 Yellow + 4 Load Switch 16 Yellow + 4 Phase 5 Phase On
5 Load Switch 1 Green - 5 Load Switch 8 Yellow - 5 Load Switch 16 Yellow - 5 Phase 6 Phase On
6 Load Switch 2 Red + 6 Load Switch 8 Green + 6 Load Switch 16 Green + 6 Phase 7 Phase On

1

7 Load Switch 2 Red -

6

7 Load Switch 8 Green -

12

7 Load Switch 16 Green -

18

7 Phase 8 Phase On
0 Load Switch 2 Yellow + 0 Load Switch 9 Red + 0 TBC Auxiliary 1 0 Phase 1 Phase Next
1 Load Switch 2 Yellow - 1 Load Switch 9 Red - 1 TBC Auxiliary 2 1 Phase 2 Phase Next
2 Load Switch 2 Green + 2 Load Switch 9 Yellow + 2 Preempt 1 Status 2 Phase 3 Phase Next
3 Load Switch 2 Green - 3 Load Switch 9 Yellow - 3 Preempt 2 Status 3 Phase 4 Phase Next
4 Load Switch 3 Red + 4 Load Switch 9 Green + 4 0 4 Phase 5 Phase Next
5 Load Switch 3 Red - 5 Load Switch 9 Green - 5 0 5 Phase 6 Phase Next
6 Load Switch 3 Yellow + 6 Load Switch 10 Red + 6 0 6 Phase 7 Phase Next

2

7 Load Switch 3 Yellow -

7

7 Load Switch 10 Red -

13

7 0

19

7 0
0 Load Switch 3 Green + 0 Load Switch 10 Yellow + 0 TBC Auxiliary 3 0 Phase 8 Phase Next
1 Load Switch 3 Green - 1 Load Switch 10 Yellow - 1 Free/Coord Status 1 Phase 1 Check
2 Load Switch 4 Red + 2 Load Switch 10 Green + 2 Preempt 3 Status 2 Phase 2 Check
3 Load Switch 4 Red - 3 Load Switch 10 Green - 3 Preempt 4 Status 3 Phase 3 Check

3

4 Load Switch 4 Yellow +

8

4 Load Switch 11 Red +

14

4 Preempt 5 Status

20

4 Phase 4 Check

Expanded Controller Interface Device Input/Output Capabilities 12
and CID Software Coordination

5 Load Switch 4 Yellow - 5 Load Switch 11 Red - 5 Preempt 6 Status 5 Phase 5 Check
6 Load Switch 4 Green + 6 Load Switch 11 Yellow + 6 0 6 Phase 6 Check
7 Load Switch 4 Green - 7 Load Switch 11 Yellow - 7 0 7 Phase 7 Check
0 Load Switch 5 Red + 0 Load Switch 11 Green + 0 Timing Plan A 0 Phase 8 Check
1 Load Switch 5 Red - 1 Load Switch 11 Green - 1 Timing Plan B 1 0
2 Load Switch 5 Yellow + 2 Load Switch 12 Red + 2 Timing Plan C 2 0
3 Load Switch 5 Yellow - 3 Load Switch 12 Red - 3 Timing Plan D 3 0
4 Load Switch 5 Green + 4 Load Switch 12 Yellow + 4 Offset 1 4 0
5 Load Switch 5 Green - 5 Load Switch 12 Yellow - 5 Offset 2 5 0
6 Load Switch 6 Red + 6 Load Switch 12 Green + 6 Offset 3 6 0

4

7 Load Switch 6 Red -

9

7 Load Switch 12 Green -

15

7 Automatic Flash Status

21

7 0

Table 6. PC To CID Messages

 Byte Bit # Function Byte # Bit # Function Byte # Bit # Function

 0 Test B 0
Pedestrian
Detector 5 0 0

 1 Automatic Flash 1
Pedestrian
Detector 6 1 Address Bit 0

 2 Dimming Enable 2
Pedestrian
Detector 7 2 Address Bit 1

 3
Manual Control
Enable 3

Pedestrian
Detector 8 3 Address Bit 2

 4 Interval Advance 4 0 4 Address Bit 3

 5
External Minimum
Recall 5 0 5 Address Bit 4

PC to CID Message -- This message is sent to the CID
via a bulk transfer on Endpoint 1. A command byte of
0 is the first byte in this message to let the CID know
that this is an input update. This makes the total size 25
bytes for this message.

 6 External Start 6 0 6 0
Byte Bit # Function Byte Bit # Function

10

7 TBC On Line

16

7 0

22

7 0

0 0 0
Detector 33
Call Status 0 Stop Time Ring 1 0 0 0

Phase 1 Pedestrian
Omit

1 0 1
Detector 34
Call Status 1 Stop Time Ring 2 1 0 1

Phase 2 Pedestrian
Omit

2 0 2
Detector 35
Call Status 2

Max II Selection
Ring 1 2 0 2

Phase 3 Pedestrian
Omit

3 0 3
Detector 36
Call Status 3

Max II Selection
Ring 2 3 0 3

Phase 4 Pedestrian
Omit

4 0 4
Detector 37
Call Status 4 Force Off Ring 1 4 0 4

Phase 5 Pedestrian
Omit

5 0 5
Detector 38
Call Status 5 Force Off Ring 2 5 0 5

Phase 6 Pedestrian
Omit

0

6 0

5

6
Detector 39
Call Status

11

6 Call to NA 1

17

6
Red Rest
Ring 1

23

6
Phase 7 Pedestrian
Omit

Expanded Controller Interface Device Input/Output Capabilities 13
and CID Software Coordination

7 0 7
Detector 40
Call Status 7

Walk Rest
Modifier 7

Red Rest
Ring 2 7

Phase 8 Pedestrian
Omit

0
Detector 1 Call
Status 0

Detector 41
Call Status 0

Pedestrian
Detector 1 0

Omit Red
Clear Ring 1 0 Offset 1

1
Detector 2 Call
Status 1

Detector 42
Call Status 1

Pedestrian
Detector 2 1

Omit Red
Clear Ring 2 1 Offset 2

2
Detector 3 Call
Status 2

Detector 43
Call Status 2

Pedestrian
Detector 3 2

Pedestrian
Recycle Ring
1 2 Offset 3

3
Detector 4 Call
Status 3

Detector 44
Call Status 3

Pedestrian
Detector 4 3

Pedestrian
Recycle Ring
2 3

4
Detector 5 Call
Status 4

Detector 45
Call Status 4 0 4

Alternate
Sequence A 4 0

5
Detector 6 Call
Status 5

Detector 46
Call Status 5 0 5

Alternate
Sequence B 5 0

6
Detector 7 Call
Status 6

Detector 47
Call Status 6 0 6

Alternate
Sequence C 6 0

1

7
Detector 8 Call
Status

6

7
Detector 48
Call Status

12

7 0

18

7
Alternate
Sequence D

24

7 0

0
Detector 9 Call
Status 0

Detector 49
Call Status 0 0 0

Phase 1
Omit

1
Detector 10 Call
Status 1

Detector 50
Call Status 1 0 1

Phase 2
Omit

2
Detector 11 Call
Status 2

Detector 51
Call Status 2 0 2

Phase 3
Omit

3
Detector 12 Call
Status 3

Detector 52
Call Status 3 0 3

Phase 4
Omit

4
Detector 13 Call
Status 4

Detector 53
Call Status 4 0 4

Phase 5
Omit

5
Detector 14 Call
Status 5

Detector 54
Call Status 5 0 5

Phase 6
Omit

6
Detector 15 Call
Status 6

Detector 55
Call Status 6 0 6

Phase 7
Omit

2

7
Detector 16 Call
Status

7

7
Detector 56
Call Status

13

7
Preempt Detector
3

19

7
Phase 8
Omit

0
Detector 17 Call
Status 0

Detector 57
Call Status 0

Preempt Detector
4 0

Phase 1
Hold

1
Detector 18 Call
Status 1

Detector 58
Call Status 1

Preempt Detector
5 1

Phase 2
Hold

2
Detector 19 Call
Status 2

Detector 59
Call Status 2

Preempt Detector
6 2

Phase 3
Hold

3
Detector 20 Call
Status 3

Detector 60
Call Status 3 Call to NA II 3

Phase 4
Hold

3

4
Detector 21 Call
Status

8

4
Detector 61
Call Status

14

4 0

20

4
Phase 5
Hold

Expanded

5
Detector 22 Call
Status 5

Detector 62
Call Status 5 0 5

Phase 6
Hold

6
Detector 23 Call
Status 6

Detector 63
Call Status 6 0 6

Phase 7
Hold

7
Detector 24 Call
Status 7

Detector 64
Call Status 7 0 7

Phase 8
Hold

0
Detector 25 Call
Status 0 0 0

Inhibit Max Term
Ring 1 0

Timing Plan
A

1
Detector 26 Call
Status 1 0 1

Inhibit Max Term
Ring 2 1

Timing Plan
B

2
Detector 27 Call
Status 2 0 2

Local Flash
Status 2

Timing Plan
C

3
Detector 28 Call
Status 3 0 3

MMU Flash
Status 3

Timing Plan
D

4
Detector 29 Call
Status 4 0 4 Alarm 1 4 0

5
Detector 30 Call
Status 5

Preempt
Detector 1 5 Alarm 2 5 0

6
Detector 31 Call
Status 6

Preempt
Detector 2 6 Free (No Coord) 6 0

4

7
Detector 32 Call
Status

9

7 Test A

15

7 Test C

21

7 0

Controller Interface Device Input/Output Capabilities 14
and CID Software Coordination

PART 2: REAL-TIME PLAYBACK HARDWARE-IN-THE-LOOP SIMULATION OF
TRAFFIC SYSTEMS

A. INTRODUCTION *

Traffic signals are controlled by traffic controllers, embedded computers that set light scheduling

according to a programmed algorithm. Traffic controllers vary widely in intelligence; they may

implement simple fixed-time scheduling systems, more complex traffic-actuated control, or

advanced interconnected control systems.

A traffic controller’s control outputs are called phase indications; they show allowed movement

for vehicles or pedestrians in a certain path. Traffic-actuated controllers receive inputs from

traffic detection sensors (usually inductive loops) and from pedestrian call buttons. Phase

decisions in an actuated controller are made based on metrics extracted from the input data,

including the presence of waiting vehicles, vehicle speed, and traffic volume or density [1].

Traffic engineers frequently use computer “microscopic simulation” tools to design and tune

traffic systems. A micro-simulator is a software program that models the behavior of individual

vehicles in the system. Common simulators include CORSIM (CORridor SIMmulation),

developed by the Federal Highway Administration as part of its Traffic Software Integrated

Systems Package [2], and VISSIM (a German acronym; the name means roughly “traffic in

towns simulation”), developed commercially by Innovative Transportation Concepts, Inc. [3];

other commercial simulators are also available, but are less widely used at present. These

simulators typically provide measures of effectiveness (MOE) for the simulated system, such as

total vehicle delay, stopped delay, and queue lengths; detailed run results; and an animation of

the system as it is being simulated. Simulations are based on stochastic vehicle models, but are

repeatable for a given random seed.

*This section consists of the following paper that was presented at the 32nd Annual Conference of

the IEEE Industrial Electronics Society., November 6-10, 2005: E. M. Suwal, B. K. Johnson, H.

L. Hess, and J. C. Fisher, “Real-Time Playback Hardware-in-the-Loop Simulation of Traffic

Systems,” IECON 2005, pp. 383-388.

Expanded Controller Interface Device Input/Output Capabilities 15
and CID Software Coordination

B. LIMITATIONS IN MICROSCOPIC SIMULATIONS

Traffic signals and traffic controllers are devices used to control and regulate the flow of traffic

at intersections. Optimal traffic signal timing is developed and tested through a variety of traffic

optimization and simulation models that simulate the traffic behavior and emulate the possible

actions of the traffic controller. With advances in traffic controller computing power and control

logic, the issue of whether the generic simulation model controller accurately emulates the actual

performance of the field controller has cast considerable doubt on the output of the simulation

models. Continuing changes in the control algorithms used in the traffic controllers and the

propriety maintained by their manufacturers limit the accuracy of device-specific models [4, 5].

1. Hardware-in-the-Loop Simulation

In a typical simulation, software such as CORSIM simulates a real-world traffic network by

moving individual vehicles across a combined surface street and freeway network using accepted

vehicle and driver behavior models and simulating various traffic control devices. The software

contains algorithms to both track vehicles through a prescribed highway network and to

implement a coordinated actuated signal system [6].

Hardware-in-the-loop simulation (HILS) is different in that, instead of having CORSIM simulate

controller features, the CORSIM traffic model only simulates the vehicle detector signals. The

control strategy is run on an actual traffic controller that will be used in the field. A controller

interface device (CID) provides the real-time linkage between CORSIM and the traffic signal

controller as shown in Fig. 1 [4, 5, 6]. The CID makes hardware in the loop simulation possible

[1].

Figure 1: Hardware-in-the-loop simulation with a CID.

The CID is typically an embedded controller that relays detector information from the simulation

software to the traffic controller, and returns phase information from the traffic controller to the

Expanded Controller Interface Device Input/Output Capabilities 16
and CID Software Coordination

simulation software. In this paper, we examine the accuracy of HILS simulations performed

using the “CID II,” a USB-based interface device developed at the University of Idaho; the

methodology is valid for all similar devices.

2. CID Communication Protocol and Latencies

The USB protocol allows up to 127 devices to be connected to a personal computer. Several

different data transfer modes are provided to support different types of devices. The CID uses the

isochronous transfer mode, which guarantees bounded transfer latency [7].

USB transfers occur in one millisecond long “frames.” This provides a very convenient timing

reference for the CID II. According to specification, it should be possible to communicate with

around 40 CIDs in a single frame using the isochronous transfer method. In practice, it is

difficult, if not impossible, to do so. The available USB driver can only write data to or read data

from one device per function call, and both read and write calls actually require 6 ms to execute

on the computer [5]. The driver can average one transfer per frame, if it is passed a number of

packets of data for a particular device, but this is not useful for the purpose of hardware-in-the-

loop simulations, in which there is a relatively large time gap between each packet.

In a simulation with only a few CIDs, this should be insignificant, since the simulation time step

is usually 1000 ms long. However, in simulations with tens of CIDs, this delay could approach

the size of the time-step.

In general, a one time-step timing error does not seem significant; in most simulation systems,

time step frequency is chosen well above the maximum transient frequencies. However, there is

doubt as to whether a 1000 ms time step length is small enough for advanced traffic control

systems; some commercial simulators are moving towards either reducing the size of the time

step (for instance to 100 ms) or allowing the user to set the step size.

The two most relevant studies of CID timing issues were undertaken at Louisiana State

University with a different type of CID [4], and jointly at the University of Idaho and Purdue

University with NIATT’s CID II [5]. Results (MOEs) from a number of hardware-in-the-loop

simulations for both fixed-time and traffic-actuated controllers were compared to results from

Expanded Controller Interface Device Input/Output Capabilities 17
and CID Software Coordination

“normal,” software-only, simulations and found to have no statistically significant deviation.

However, this type of study is not as satisfactory in general as might be hoped: it can only

compare results for traffic controllers that can be adequately modeled in software; in fact, there is

little need to use HIL simulation with such controllers. Because there is by definition no easy

way to model the operation of traffic controllers with proprietary or highly complex algorithms,

this evaluation method cannot determine the impact of the CID interface on them.

3. Real-Time Playback

Real-time playback (RTPB) is a discrete-time simulation technique developed for systems in

which it is difficult or impossible to “close the loop” between computer simulation and hardware

testing—for instance, if the simulation is unable to be run in real time. RTPB simulators have

been used by the electric power industry for some time. They provide a cheap alternative to real-

time digital simulators (which can cost hundreds of thousands of dollars), in which a simulation

actually interacts with the tested system in real-time. RTPB simulators are used principally for

testing numerical relays [8], but they have also been used for testing other types of hardware (for

instance, fault locators [9]) with fast response times that preclude analog testing. More generally,

RTPB can be used to create a quasi-hardware-in-the-loop simulation that is real-time to the limits

of a playback device. Interaction with the physical system is independent of both simulation

speed and communication latency between the simulator and the hardware.

The simulation procedure is as follows:

1. The initial state of the physical system’s outputs is read from the playback device.

2. The computer simulator is started and run for a fixed amount of time, with the simulated

system’s output in the simulation fixed at its initial state. The simulation’s inputs to the

system are recorded.

3. The simulated system inputs are transmitted to the playback device, and “played” in real-

time until a change is observed in the system’s outputs.

4. The computer simulator is run again for a fixed amount of time past the previously

observed output change. The output change is added to the simulated system’s behavior.

The simulation’s inputs to the system are recorded.

Expanded Controller Interface Device Input/Output Capabilities 18
and CID Software Coordination

Steps 3 and 4 are repeated, acquiring a new system output change each time, as long as desired.

Fig. 2 provides a graphical depiction of the process. The simulator generates inputs to be applied

to the physical system. When new output events are found from the playback process, the

simulator must be invoked again to generate a new sequence of inputs given the changed system-

state. Of course, the system must be in the same internal state at the beginning of each playback

run to insure consistency from one playback run to another.

Figure 2. Real-time playback

4. Implementation

The RTPB simulator makes use of the existing CID II hardware, but with modified firmware.

The VISSIM traffic simulator was used because of its capability of running with user-selected

time step sizes, which allows testing for the impact of time step size as well as latency. A custom

control program written in C++ manages the entire RTPB process.

Four principle modifications were made to the CID firmware:

1. Ordinarily, the simulation produces detector information every second, which includes

the timing information. In the RTPB simulation, the timing information is read by the

Expanded Controller Interface Device Input/Output Capabilities 19
and CID Software Coordination

control program, which then creates a new set of detector information without the timing

data every 100 milliseconds. The timing resolution is thus traded-off to keep the size of

detector data reasonable.

2. A queuing system was added, allowing the CID to store output data for a number of time

steps in the future. This removed the possibility of error in the time step length.

3. The CID was programmed to keep track of input (phase) changes. Specifically, the

modified CID can record the value and time of the Nth input change after playback has

begun (where N can be set by a command over USB).

4. A four-byte simulation clock, incrementing every millisecond, was added to provide a

timing base. Functions were added to enable multiple CIDs to synchronize their clocks

prior to simulation.

The CID’s output data queue length can be set using the control program. Each element in the

queue represents a time step and each time step is 100 ms long. The timing clock is four bytes

long, but for convenience the least-significant byte rolls over at 100. This allows up to 4605.9

hours of playback before the clock rolls over.

A global “mode” byte allows the CID to keep track of its state from one start-of-frame interrupt

to another. These “modes” allows the CID to function differently to make the playback work

efficiently. The “mode” is controlled by command from the RTPB control program.

For RTPB to work correctly, all the CIDs should be synchronized, that is, the timing clock

implemented in firmware should be synchronized so that the CID detecting the Nth change first

can be correctly determined.

As it was mentioned before, all the traffic controllers need to be brought to the same state at the

start of every simulation and playback process. To achieve this, a set of predetermined detector

outputs are fed to the traffic controllers for a sufficient time period to bring them to a known and

stable state.

5. Operation

A control program, running on the simulation computer, handles the processes of running the

traffic simulator. It runs the playback operation passing data (phase states and detector pulses)

Expanded Controller Interface Device Input/Output Capabilities 20
and CID Software Coordination

back and forth, and determining when the simulation has completed or stalled. The program was

written in C++ as a Windows console program, meaning that it lacks a graphical interface but

can still access Microsoft Windows API functions. Fig. 3 illustrates the structure of the RTPB

system.

Figure 3. Structure of the RTPB system

In the control program, a C++ object is instantiated for each CID. The class provides methods for

sending and receiving data, “shortcut” functions for common CID commands, and data storage

arrays for both phase and traffic detector data. When the associated traffic controller’s initial

phase state is read, it is copied through the CID’s entire phase storage array. Then a member

function is called to dump the array to a file to be read by VISSIM.

The control program’s operation can be divided loosely into three steps: initializing the

simulation, running the playback loop, and generating results in a useful format. The control

program process is described step by step as follows:

1. The control program first reads a settings file that contains information such as the input

file for the simulation, location of the simulator executable file, the number of CIDs that

will be used and the length of the playback simulation.

Expanded Controller Interface Device Input/Output Capabilities 21
and CID Software Coordination

2. The traffic controllers are brought to a known state before starting the simulations. The

control program sends out a sequence of detector calls to bring the traffic controllers to

the same known state at the start of every simulation.

3. The initial phase states are read from the traffic controllers before starting the simulation.

The initial phase states have to be the same every time for RTPB simulation to work.

4. The Simulator is executed using a system command in the control program that

automatically loads the input file and starts the simulation, at the end of which, the

program is terminated. VISSIM spawns an interface program for each CID that reads

phase data from a phase file for the corresponding CID.

5. Before the simulator is terminated, the interface program writes the detector data to

detector files for the corresponding CID. The format of the data is the same as that in

HILS.

6. The control program processes the detector data before it is sent to the CIDs. Since the

timing data is not sent, the resolution of the data is increased for a more accurate

playback.

7. The processed detector data is transferred to the corresponding CIDs for playback.

8. The CIDs are synchronized before playback using USB Start-of-Frame (SOF) packet’s

frame number so that all the CIDs start playback at exactly the same time.

9. The control program then appends newly detected phase states to the phase files for the

CIDs.

10. The process is repeated from step 2 until simulation of desired length is completed.

Expanded Controller Interface Device Input/Output Capabilities 22
and CID Software Coordination

6. Results

Table 1 Comparison of HILS and RTPB Simulation Output Data

HILS RTPB

Time of change SCJ Phase color Time of change SCJ Phase color
1 8 green 1 8 green
1 7 green 1 7 green
1 6 green 1 6 green
1 5 green 1 5 green
1 4 green 1 4 green
1 3 green 1 3 green
1 2 green 1 2 green
1 1 green 1 1 green
9 7 amber 9 7 amber
12 7 red 12 7 red
14 7 green 14 7 green
16 3 amber 16 3 amber

The RTPB process has been tested with simulations with CID based controllers at one, three and

eight intersections. VISSIM can generate an output file recording all the phase changes in the

intersections and the simulation time when the phase change occurs. This output file was used to

compare the results of hardware-in-the-loop and RTPB simulations. A portion of the output file

for an eight-intersection simulation is shown in Table I where SCJ stands for “Signal Controlled

Junction.” Since the RTPB simulations take much longer to simulate the same length of

simulation than HILS, only 100 seconds of simulation was attempted for the tests. With one- and

three- intersection simulations, the results of HILS and RTPB were found to be identical for the

length of simulation. For eight-intersection simulation, few discrepancies were observed between

RTPB and HIL simulations. The discrepancies were mostly related to one signal controlled

junction and are due to the CID in the RTPB process detecting the phase change on that junction

at the wrong time. For example, in one of the test simulations, SCJ 4 detects phase change from

green to amber after 48 seconds into the simulation and a phase change from amber to red 54

seconds into the simulation. This is incorrect since the traffic controllers are setup with a fixed

amber hold time of 3 seconds. The correct change would have occurred after 51 seconds of

simulation. The source of this error has yet to be determined but is most likely in the way the

firmware clock is implemented.

Expanded Controller Interface Device Input/Output Capabilities 23
and CID Software Coordination

B. CONCLUSION

A procedure to run hardware-in-the-loop simulation without the affect of communication latency

has been designed. This procedure can be used to test the accuracy of hardware-in-the-loop

simulations and test the effects of time-step size of the simulation, either in addition to or

independent of communication latency. Use of the RTPB process has shown that the HILS

process is not creating artificial timing errors in the simulation results.

Acknowledgment

The authors would like to thank Zhen Li for modifying the CID interface software for RTPB.

Expanded Controller Interface Device Input/Output Capabilities 24
and CID Software Coordination

C. REFERENCES

1. Y. Zhou, “Real-Time Traffic Simulation,” MSEE thesis, University of Idaho, 2000.

2. Federal Highway Administration, Traffic Software Integrated System 97 User’s Guide –

CORSIM Version 1.03, New York, June 1997.

3. ITC. (2003). Innovative Transportation Concepts Inc, 1128 NE 2nd St., Ste. 204 Corvallis,

OR 97330. http://www.itc-world.com/ (Accessed: April 25, 2005)

4. Bullock, D., and A. Catarella, “A Real-Time Simulation Environment for Evaluating

Traffic Signal Systems”. Paper presented at the 77th Annual Transportation. Research

Board Meeting. Washington D.C., January 1998.

5. Bullock, D., B. Johnson, R. Wells, M. Kyte, and Z. Li, “Hardware-in-the-Loop

Simulation,” Transportation Research Part C: Emerging Technologies. Vol. 12, Issue 1,

pp. 73-89, February 2004.

6. R. L. Gordon, R. A. Reiss, H. Haenel, E. R. Case, R. L. French, A. Mohaddes, and R.

Wolcott, Traffic Control Systems Handbook. Ch 4. FHWA-SA-95-032, February 1996,

7. USB Documents, “USB 1.1 Specification,” http://www.usb.org/developers/docs

(Accessed: April 25, 2005).

8. M. S. Sachdev, T. S. Sidhu, and P. G. McLaren, “Issues and Opportunities for Testing

Numerical Relays,” IEEE Power Engineering Society Summer Meeting, July 2000.

9. R. Das, M. S. Sachdev, T. S. Sidhu, “A Fault Locator for Radial Subtransmission and

Distribution Lines,” IEEE Power Engineering Society Summer Meeting, July 2000.

Expanded Controller Interface Device Input/Output Capabilities 25
and CID Software Coordination

http://www.itc-world.com/
http://www.usb.org/developers/docs

	EXECUTIVE SUMMARY
	 PART 1: SYNCHRONOUS DATA LINK CONTROL INTERFACE FOR INTERFACE FOR CONTROLLER INTERFACE DEVICE TO TRAFFIC CONTROLLER COMMUNICATION
	A. INTRODUCTION
	B. HARDWARE
	1. Revisions
	2. FX2 hardware interface
	3. SDLC Layout
	4. Parts List

	C. FIRMWARE
	 D. SOFTWARE
	E. SET-UP
	1. Setting up the TS2 traffic controller is SDLC mode
	2. Setting up and connecting the SDLC CID
	3. Connecting to the PC and hardware testing
	4. Run application software

	F. CONCLUSION

	PART 2: REAL-TIME PLAYBACK HARDWARE-IN-THE-LOOP SIMULATION OF TRAFFIC SYSTEMS
	A. INTRODUCTION *
	B. LIMITATIONS IN MICROSCOPIC SIMULATIONS
	1. Hardware-in-the-Loop Simulation
	2. CID Communication Protocol and Latencies
	3. Real-Time Playback
	4. Implementation
	5. Operation
	 6. Results

	B. CONCLUSION
	 C. REFERENCES

