Lecture Notes

Vector Algebra
Instructions: Read through the lecture while watching the PowerPoint slide show that accompanies these notes. When you see the <ENTER> prompt, press enter for the slide show so that you can progress through the show in a manner that corresponds to these notes.

SLIDE 1: As we continue our study of biomechanics, the next topic that we want to cover is vector algebra. The word “vector” often instills fear in students in this course. So, I want to take a moment to explain to you why we are going to learn vector algebra. You already understand that one of our primary objectives in this course is to learn how and why the body moves. To understand that, we are going to spend some time talking about forces. Force is what is called a vector quantity, so we have to learn how to represent and manipulate vector quantities. The representation and manipulation of vector quantities falls under the realm of vector algebra. We will spend two days of lecture on vector algebra. At the end of the lecture time, you will better understand forces and why many of the training/teaching techniques that you use work. If it is any comfort, our focus will be primarily qualitative – we will not learn the mathematical techniques of vector algebra. So, focus on the concepts and the application of those concepts as you learn this material.   <ENTER>
SLIDE 2: I just want to remind you where we are in the course outline. We are still in Topic II. – Biomechanical Concepts Related to Human Movement. <ENTER>
SLIDE 3: As we study the subdiscipline of biomechanics, we are covering 3 main topics: basic kinematic concepts, vector algebra, and basic kinetic concepts. We are on our second topic. This topic is timely as we get ready to study muscle attachments and actions in our lab sessions. Understanding vectors will help you better understand the importance of muscle attachment sites in understanding the joint actions caused by individual muscle contractions. Keep this application in mind as you learn this material. <ENTER>

SLIDE 4: In the subtopic Vector Algebra, we will cover 3 areas: Introductory Concepts, Vector Composition, and Vector Resolution. <ENTER>

SLIDE 5: Let’s begin with Introductory Concepts. <ENTER>

SLIDE 6: In this area, we will learn relevant definitions, learn how to represent vector quantities so that we can analyze them, and learn specifically how to represent muscle force vectors. <ENTER>

SLIDE 7: What is vector algebra? Vector algebra is the process by which we add, subtract, multiply, and divide vector quantities. But, what kinds of quantities are vector quantities, and why do we need a special process for dealing with them? For our purposes, we can divide physical quantities in the world into two major types: vector quantities and scalar quantities. To understand what a vector quantity is, let’s first define scalar quantity. <ENTER> A scalar quantity is a physical quantity that can be completely defined or expressed in terms of magnitude. When you tell me how much (magnitude) there is, you have expressed all the pertinent information about the quantity. An example of a scalar quantity is mass. If you state that an object has 50 kg of mass, you have provided all the pertinent information about the object in terms of its mass. This is not the case with vector quantities. <ENTER> A vector quantity is a physical quantity that is described in terms of both magnitude and direction. Because we have to be concerned with direction, we cannot simply add and subtract vector quantities in the same way that we do with scalar quantities. An example of a vector quantity is force. If two forces of 50 N in magnitude act on an object at the same time but in opposite directions, then the net force that acts on the object is zero. The directions cancel each other out, and the forces have no effect on the motion of the object. (The forces do deform the object, but that is a matter of study for deformable body mechanics!) Therefore, we cannot simply add the magnitudes of the forces together, but we must also consider the directions of the forces as well. There are numerous vector quantities in the physical world, but we will deal primarily with forces and torques this semester. <ENTER>

SLIDE 8: The second area that we want to discuss under Introductory Concepts is Vector Representation. To be able to deal with vector quantities conceptually or mathematically, we must have a way to represent them that depicts both their magnitude and their direction. Mathematically, we use numerals to indicate the magnitude, and we use + signs, minus (-) signs, and angles to depict their direction. For example, if we use the standard linear system that was introduced in Basic Kinematic Concepts, then we would state that the person moved -50 m to indicate that a person was displaced 50 m to the left (backward, or in the -x direction) <ENTER>, to the left (-z direction) <ENTER>, or downward (-y direction) <ENTER>. Obviously, we would have to know which of the three axes we were describing motion about to be able to interpret the data. If the person did not move along one of the major axes but rather at an angle, we might state that the person had displaced 50 m in a direction of -40 degrees to indicate a CW rotation. <ENTER>

SLIDE 9: Another way to represent vector quantities is graphically, with an arrow. <ENTER> By using arrows to represent vector quantities, we can draw diagrams of movement situations to help us systematically analyze the movement. This is especially useful for analyzing forces. <ENTER> The arrow must depict both characteristics of the vector quantity – the magnitude and the direction. <ENTER> The magnitude of the vector quantity is depicted by the length of the arrow. To be accurate in depicting magnitude, you would have to set up a conversion scale, much like what is used in road maps. For example, if you state that a 1 inch vector represents 50 N of force, then you would draw a 2 inch vector to represent a 100 N force. While we will not formally scale vectors this semester, you should be comfortable with this concept so that you can estimate forces from vectors that are given to you, or so that you can make general representations of force magnitudes when you are drawing and comparing two forces. <ENTER> The second characteristic – the direction – is represented by the arrow head of the vector. Obviously, this will be placed on the end of the vector that indicates the direction associated with the quantity. <ENTER> Because we will be dealing with force vectors quite a bit this semester, I want to introduce two other characteristics of forces that should also be depicted on vectors. <ENTER> First, is the point of force application. When drawing a vector to represent a force, the tail of the vector should be placed on the point of force application. <ENTER> Second, a dashed line that runs towards infinity along the line of the vector should also be drawn to indicate the line of force for the force being analyzed. This is also sometimes called the line of pull, if the force being analyzed is a pulling force, like a muscle force. The importance of this characteristic will be explained better when we discuss torque in our next lecture. Now, let’s look at some examples of vector representation. <ENTER>

SLIDE 10: In the example depicted on the slide, a vector is used to depict the velocity of the ball at one instant in time. The magnitude is indicated by the length of the vector, although we don’t have a conversion scale available to us. The direction could be stated as +30 degrees. The quantity being depicted in this example is not force. Why do we know that this is not a force vector? <ENTER> In the second example, a vector is again being used to depict the velocity of the shot at one instant in time. What would be the direction of this vector? <ENTER>

SLIDE 11: On this slide, the vector is being used to indicate the weight (or gravity) acting on the person walking up the hill. The direction is down vertical since gravity always acts toward the center of the earth. <ENTER>

SLIDE 12: Now, let’s turn our attention to using vectors to represent muscle forces, since we will talk a lot about muscles this semester. As with any other force, a muscle force vector should represent the four characteristics of the force. Let’s start with point of force application. <ENTER> Where do you think you need to place the tail of the vector to accurately depict the muscle’s point of force application? Most students correctly answer “at the point of attachment,” but which point of attachment? We have already learned that when a muscle contracts, it pulls towards its center, exerting a force on all the bones that it attaches to. So where do we place the vector? Well, it depends on which bone’s motion you want to analyze. In other words, before you start, you need to define your system. What system’s motion do you want to analyze? Typically, with muscles we assume that the distal bone is the one that will move, and, therefore, we put the tail on the distal attachment site. The distal bone is the one that usually moves because it is usually the one that is more free to move – in other words, the magnitude of the other forces acting on the distal end are usually less than the magnitude of the other forces acting on the proximal end, so the muscle’s force is more able to overcome the other forces and cause movement. More about this later! For now, we will assume the point of application is on the distal end, but I want you to understand that the other end could move as well. My purpose right now is to help you understand why muscles cause the joint actions that they do, so we will keep it simple and assume the distal end is the moving end. If I ask you to draw a muscle force vector on the first exam, you should assume the distal end is the moving end. <ENTER> What about the direction of the muscle force vector? Most students initially answer “towards the proximal attachment.” However, this answer is not correct. The direction that the force of a muscle acts will be in the direction that the muscle fibers or the tendon fibers come off the bone initially. That is the key. As we will see in an example in a minute, the initial direction of the muscle or tendon fibers is not always toward the other attachment point. <ENTER> The third characteristic is magnitude. Again, the length of the vector indicates the magnitude of the muscle force. While you will not be asked to formally scale any vectors, you should be able to estimate magnitudes of forces if given the appropriate information. I will give you some examples of this later. <ENTER> The last characteristic is the line of force. You should get in the habit of drawing this, although its significance may not be clear. We will talk more about this significance later. Now let’s look at some examples of drawing muscle force vectors. <ENTER>

SLIDE 13: Let’s start with the biceps brachii. If we assume that the distal bone is the moving bone, then the tail should be placed on the distal attachment of the muscle to represent the point of force application. For the biceps brachii, the distal attachment is the radial tuberosity. <ENTER> If you look at the picture, you can get a general idea of the direction that the tendon fibers run from this distal attachment, so our vector should run in this general direction. Can you draw the force vector? <ENTER> Did you get it right? Now, to illustrate the point that either end can move, let’s draw a force vector to represent the pull of the biceps brachii on the proximal bone. Do you know what the proximal attachment of the biceps brachii is? It actually has 2 – the coracoid process and the supraglenoid tubercle of the scapula. Did you know that the biceps brachii crossed the shoulder joint and could cause shoulder joint motion? The only proximal attachment that we can see is on the diagram is the coracoid process so we will use this one for our example. <ENTER> The tail of the vector should be placed here. Can you figure out what direction the vector should be drawn in? <ENTER> Did you get it right? Notice that the two vectors do not directly oppose each other in direction even though they represent the force output of the same muscle. This is because the direction is determined by the direction of the fibers right at the attachment site, not the direction of the fibers in the belly of the muscle. Also, note that we would use the first vector if we wanted to analyze the biceps brachii’s effect on the radius or forearm, and we would use the second vector if we wanted to analyze the biceps brachii’s effect on the scapula. Again, you will assume, unless told otherwise, that the moving bone or the bone of interest is the distal bone. <ENTER>

SLIDE 14: Next, let’s draw in a force vector to represent the pull of the brachialis. Since we will assume that the distal bone is the moving bone, then the tail should be placed on the distal attachment of the muscle to represent the point of force application. Do you know where the distal attachment of the brachialis is? It is on the coronoid process of the ulna. <ENTER> If you look at the picture, you can get a general idea of the direction that the tendon fibers run from this distal attachment, so our vector should run in this general direction. Can you draw the force vector? <ENTER> Did you get it right? <ENTER>

SLIDE 15: Next, let’s draw in a force vector to represent the pull of the deltoid muscle. Again, for our purposes, the tail should be placed on the distal attachment of the muscle to represent the point of force application. Do you know where the distal attachment of the deltoid is? It is on the deltoid tuberosity of the humerus. <ENTER> Although you can’t see the actual attachment site on this picture, you can get a general idea of the direction that the muscle/tendon fibers run from this distal attachment if you can pick out which muscle is the deltoid muscle. Do you know which one it is? Our vector should run in the general direction of these fibers at the distal attachment site. Can you draw the force vector? <ENTER> Did you get it right? Here is a good example of a muscle that does not pull towards its proximal attachment from its distal end. Rather, it pulls outward from the body. This fact is critical when trying to understand the torque that a muscle produces and the joint actions that it causes. We will learn more about torque production in our next lecture. <ENTER>

SLIDE 16: Next, let’s draw in a force vector to represent the pull of the pectoralis major. Where is the distal attachment of the pectoralis major? It is on the lateral lip of the bicipital (or intertubercular) groove. <ENTER> Can you draw the force vector? <ENTER> Did you get it right? <ENTER>

SLIDE 17: I want to use this muscle to make another point. You may have heard people refer to the “upper” and “lower” pecs, or the “sternal” and “clavicular” pecs. Well, the reason that people use those terms is because the pectoralis major can function as two separate muscles, even though structurally it is bundled into one organ. For now, we won’t discuss why that is the case, but let’s draw force vectors to represent the two functional units of this muscle. At the distal attachment, the fibers do tend to run in several directions, and if we divide the muscle into two parts based on its proximal attachment, <ENTER> we might think of the muscle as two separate muscles as shown on the slide. <ENTER> Now how would you draw force vectors to represent each of the components? <ENTER> Did you get it right? <ENTER>

SLIDE 18: Finally, let’s look at one last muscle – the pectoralis minor. Which end of the pectoralis minor is considered the more movable end? The coracoid process of the scapula. <ENTER> Can you draw the force vector? <ENTER> Did you get it right?  When you consider the reverse action of this muscle, it is also a respiration muscle. If the scapula is fixed, then the pectoralis minor can pull on the rib cage and cause it to expand, assisting in respiration. <ENTER>

SLIDE 19: Now that you understand what vectors are, and how to represent vector quantities graphically, let’s turn our discussion to how to manipulate vectors so that we can add & subtract vector quantities. The first process we will discuss is vector composition. <ENTER>

SLIDE 20: Vector composition is the process of determining a resultant vector by adding two or more vectors together. <ENTER> The new vector is called the resultant vector. In the case of forces, we may call it the resultant force, or the net force. Vector composition can be accomplished mathematically, but our focus in this course will be on the graphical method of vector composition. If you understand this concept, then you will understand how altering the magnitude and/or direction of one force within a system can completely change the net force that acts on the system. <ENTER>

SLIDE 21: One graphical method of vector composition is sometimes called chaining or the head-to-tail method. There are other graphical methods as well, but this method can be used in any situation, with as many vectors as presented. During the next few slides, I will walk you through the steps to take for this method. We’ll use two examples to illustrate, as shown on the slide. In the first example, we will “add” vectors P & Q to determine the resultant. In the second example, we will multiply vector ‘a’ times 3, which is another way of saying we will add ‘a’ + ‘a’ + ‘a’. <ENTER> The first step is to select a vector to start with and draw it, maintaining direction and magnitude. This is shown in example #1 <ENTER> and example #2. <ENTER>  It does not matter which vector you start with, as I will show you in another example in a few minutes. <ENTER>

SLIDE 22: The second step is to chain the tail of the next vector to the head of the first, maintaining direction and magnitude from original vector. Again, this is shown in example #1 <ENTER> and example #2. <ENTER> The two keys to this step are 1) the tail of the 2nd vector must connect to the head of the 1st (thus, the head-to-tail method), and 2) you must maintain direction and magnitude of the vectors as you chain them. <ENTER> 

SLIDE 23: The third step is to continue to chain vectors in this manner until they are all chained. This is shown in example #2 <ENTER>. There are no additional vectors to chain in example #1. You can do this for as many vectors as you have. Again, you must connect the vectors head-to-tail, and maintain direction and magnitude of each vector. <ENTER>

SLIDE 24: Once you have chained all the vectors together, the 4th step is to draw in the resultant vector by connecting the tail of the first vector in the chain to the head of the last vector in the chain. This is shown for example #1 <ENTER> and example #2 <ENTER>.  <ENTER>

SLIDE 25: The last step is to figure out which end of the resultant vector is the head, so that you indicate the direction of the resultant vector appropriately. This is where the head-to-tail technique changes. In this step the head of the resultant vector will be the end that is connected to the head of the last vector. In other words, head-to-head. This is shown in example #1 <ENTER> and example #2 <ENTER>. It is very important that you get this step correct, or you will end up with a wrong answer. You will have the magnitude correct, but you will have the direction wrong. <ENTER>

SLIDE 26: If I tell you that vector P has a magnitude of 50 N, can you estimate the magnitude of the resultant vector in example #1? Maybe 110-120 N? Can you see that?  <ENTER> On the next 3 slides, I want to make three other points about vector composition. <ENTER>

SLIDE 27: As I told you earlier, it does not matter which vector you start with, nor does it matter what order you chain the vectors in. The key is that you connect your vectors head-to-tail while chaining them, and that you maintain magnitude and direction. As an example, let’s chain the 4 vectors shown in the figure in a different order, starting with a different vector. <ENTER> This time I started with C, then B, then A, and finally D. Notice that for each vector, I maintained both magnitude and direction. Can you draw in the resultant vector? Try it, and then when you are ready, press the space bar to see if you got it right! <ENTER> Notice that the resultant (R) for this order of chaining is the same in magnitude and direction as the resultant (R) in the first order of chaining. It doesn’t matter what order you use. <ENTER> If A=50 N of force, what would you estimate the magnitude of R to be? Maybe 100 N? Can you see that? <ENTER> How would you state the direction of R? Well, if we use an absolute reference system where the right horizontal is 0 degrees, we would say that R is ~100 N at about 70 degrees. <ENTER> Again, it is important that you know what reference system is being used. Relative systems are used primarily for body segment positions and displacements. Otherwise, an absolute system is the one usually used. <ENTER>

SLIDE 28: Point #2: The same R can be achieved from an infinite combination of vectors. In the three examples shown on the slide, the same R is shown as a resultant of three different combinations of vectors. This is true in human movement as well when trying to analyze forces. The same resultant force can be achieved by the body with an infinite combination of force applications. In human movement, we can get the right outcome (resultant force) with numerous combinations of force applications – some of which may be safe and some which may be unsafe. That is one reason that you should consider the process or technique one uses to produce the force rather than just consider the outcome. Good outcomes can be accomplished with poor and unsafe techniques. <ENTER>
SLIDE 29: Point #3: The magnitude of R is dependent on the direction of the components, not just their magnitude. In the three examples shown on the slide, vectors F and P have the same magnitude in each example. However, the magnitude of the resultant vector (R) is different in each of the examples because the directions of F and P change. Don’t forget that magnitude of R is dependent on the direction as well as the magnitude of the component vectors. Remember, that is why we have to treat vector quantities differently. <ENTER> If F=300 N of force, what would you estimate the magnitude of R to be? Well, in #1 it would be ~650 N, in #2 it would be ~500 N, and in #3 it would be ~350 N. <ENTER> How would you state the direction of R? Using an absolute system where the right horizontal is 0 degrees and counter clockwise is considered the positive direction, in #1 the direction would be ~280°, in #2 the direction would be ~260°, and in #3 the direction would be ~270°. Let’s look at a couple of other examples of vector composition. <ENTER>

SLIDE 30: Do you understand this example? Ask me questions if you don’t. <ENTER>

SLIDE 31: Do you understand this example? <ENTER> If Q=50 N of force, what would you estimate the magnitude of R to be? <ENTER> How would you state the direction of R? Would you use an absolute or a relative system? Ask me questions if you are having trouble answering any of these questions. <ENTER>

SLIDE 32: Do you understand this example? This should look somewhat familiar from earlier in the lecture! <ENTER>

SLIDE 33: The last area we want to cover under the topic of vector algebra is Vector Resolution. <ENTER>

SLIDE 34: Vector resolution is taking a resultant vector and breaking it down into 2 or more component vectors. <ENTER>

SLIDE 35: Conceptually, it is similar to the process in regular algebra where you might try to find a combination of addends that add back up to some given sum. For example, for the number 8, four different combinations of addends are shown that add back up to the number 8. You can see that there is an infinite number of addend combinations that will add back up to 8, and if you wanted to, you could spend your whole lifetime listing these combinations. In vector algebra, we do not use the term addends, but rather we use the term components. <ENTER> For any given R (resultant vector), there is an infinite number of combinations of component vectors that add back up to R. <ENTER> On the slide, you see three examples of component combinations that add back up to the pink R. Note that the pink R is the same vector in all three examples – the same magnitude and the same direction. But, I have presented three different ways that you could resolve (break down) the vector in pairs of components that are valid components of R. By valid, I mean that they would “add back up” to R (vector composition). These examples only show pairs of vector components – you could come up with combinations of 3, 4, 5, etc. vector components that add back up to R, much like what we showed for the number 8. <ENTER>

SLIDE 36: The question is, “How do we know which components to resolve for?” Which combination do we try to obtain? In other words, for the number 8, how do we know whether we are after 4+4, or 1+3+2+2? Well, we are going to keep things simple in this class when it comes to vector resolution. <ENTER> When I ask you to resolve a resultant vector, you will always deal in pairs of vectors, or in two dimensions. We will discuss resolution in three dimensions and I want you to be able to think about it this way, but the actual skill of vector resolution will only involve pairs of vectors, not combinations of 3, 4, 5, etc., vectors. <ENTER> Second, for the pairs that you work with, you will only resolve for vectors that are orthogonal to each other. Orthogonal means “at right angles” or “perpendicular.” <ENTER> In the pictures shown on the slide, both represent combination pairs that are components of R (the pink vector). However, only the bottom represents a combination pair that is orthogonal to each other. Again, for any given R, there are numerous combination pairs that are orthogonal to each other. <ENTER> For example, this third combination pair represents a second orthogonal pair that adds back up to R. So how do we know which orthogonal pairs to resolve for? <ENTER>

SLIDE 37: In many cases, the orthogonal pair that we will resolve for is the orthogonal pair that lies along the horizontal and vertical axes. <ENTER> An example of this is shown in the diagram. The resultant force that the foot exerts into the ground is labeled ‘O’. This force has been resolved into X and Y (horizontal and vertical) components. Can you think why we might want to do this? Can you pick out the orthogonal combination on the previous slide? <ENTER> There will be exceptions to this rule – in other words, there will be times when we do not necessarily want to resolve for horizontal and vertical components. Resolution is always done so that we can get more meaningful information, so you must determine what is meaningful for a given situation. For most of these exceptions, it will be obvious to you the reference that you should use to create your orthogonal resolution. If it is not obvious, then I will provide you with some guidelines for the resolution. This will be true especially for muscles, and we will do some examples in a few moments. We will also talk about one other exception to this rule. But, before we talk about the exceptions, let’s find out how to resolve vectors graphically, using horizontal and vertical combination pairs. <ENTER>

SLIDE 38: Graphical resolution of vectors is fairly simple. All you have to do is draw a rectangle around R which includes R as the diagonal of the rectangle. The idea of a rectangle implies orthogonal combination pairs. Obviously, if you are using the horizontal and vertical as your reference, then one side of the rectangle must lie on the horizontal axis and one side of your rectangle must lie on the vertical axis. The direction of these components is determined by the direction of the resultant vector. Remember, in the end, your rectangle must enclose your resultant vector, and the resultant vector must form the diagonal of the rectangle. Two examples have been done on the slide for you. <ENTER>

SLIDE 39: Can you resolve this vector into its horizontal and vertical components? Try to do it, and then move through the slide show to see if you did it correctly. <ENTER> <ENTER> If Vr is 200 m/s, what is the magnitude of Vv and Vh? Vv is ~100 m/s, and Vh is ~150 m/s. Can you see that? <ENTER> Why might you want to do this? Well in this case, how much of the velocity vector is vertical indicates the hang time and distance of the punt, while the horizontal velocity vector indicates horizontal distance covered by the punt. Depending on the situation in the football game, different combinations of horizontal and vertical velocity are necessary. Analysis of the punt in a given situation might help us alter the punter’s technique in a way that is more favorable for the given situation. For example, if you wanted more hang time, how might you alter the technique of the punter? Have him/her contact the ball later in the ROM, when the foot is higher off the ground. Note that for any combination of horizontal and vertical velocity, the magnitude of the resultant velocity might stay the same. The only thing that might change is the direction of the resultant, and thus, the magnitudes of the components. <ENTER>
SLIDE 40: Can you resolve this vector into its horizontal and vertical components? Try to do it, and then move through the slide show to see if you did it correctly. <ENTER> <ENTER>

SLIDE 41: Now let’s move to resolution of muscle force vectors. Our focus today will be on learning the technique of vector resolution for muscles. While we will discuss the application of this process (why we want to learn to do this), on the first exam you will be tested only on your ability to perform the technique. The application will come later. <ENTER> As I told you earlier, the direction of resolution should be in the direction of interest. In the previous examples, the reason we used a horizontal and vertical reference is because those were the directions that would provide the most meaningful information to us. The same is true for muscles. In the case of the shoulder girdle, horizontal and vertical directions are still the directions that provide the most meaningful information to us because these are the directions that are associated with the linear scapular movements that we have learned. The vertical linear motions are elevation and depression, and the horizontal linear motions are protraction and retraction. Notice that I have used the word linear here. That is because resolution provides us information primarily about linear motions. The scapula does move angularly (upward & downward rotation), but resolution will not be used to give us insight into that. We will talk about angular motions created by muscle forces in our next lecture. So, can you resolve this muscle’s force vector into horizontal and vertical components? <ENTER>

SLIDE 42: Well, the steps for resolution of shoulder girdle vectors are listed on the slide. (1) Draw line of pull for the muscle force. Can you do that, using the guidelines that were presented earlier in the lecture? <ENTER> (2) Draw vertical component. Can you do this? <ENTER> (3) Draw horizontal component. Can you do this? It doesn’t really matter whether you draw the horizontal or vertical component first, but my experience has been that most students find it easier to draw the vertical first. Do whichever works best for you. (4) Complete the rectangle to assure proper magnitudes of components. Can you do this? <ENTER>

SLIDE 43: What are the linear effects produced by this muscle? From the component vectors, you should be able to tell that this muscle will elevate and retract the scapula. Is it a stronger retractor or a stronger elevator? Since the horizontal (retraction) component is larger than the vertical (elevator) component, it is a stronger retractor. Do you know what muscle this is? Can you determine how the function of this muscle would change if the person had broader shoulders – in other words if the scapula were further away from the vertebral column? Let’s take a moment to explore this. <ENTER>

SLIDE 44: If we moved the scapula away from the vertebral column <ENTER> and then drew in the muscle and its force vector, <ENTER> we can see that the force vector pulls a little more horizontally than before. <ENTER> To make the difference more evident, let’s resolve the new muscle vector and compare it to the previous components. <ENTER> The yellow represents the new components and the blue represents the old components. You can see that the retraction component is a little larger and the elevation component is a little smaller. So, all other things being equal, a person with broader shoulders would have stronger retraction capability than a person with narrower shoulders. Of course, broader shoulders would change other muscle lines of pull as well, so we cannot make a definitive statement here. However, the point that I want you to understand is that small structural differences have an impact on the mechanics of muscle function, and in part, explain the differences we see between people. Remember, we are as different on the inside as we are on the outside!! Now back to our original vector resolution of the rhomboids. <ENTER>

SLIDE 45: If the resultant force is 100 N, how much force is acting to elevate the scapula? Approximately 50 N. How much force is acting to retract the scapula? Approximately 70 N. Notice that the components do not add back up to the resultant in the regular algebraic sense. 70 N + 50 N = 120 N. The components add back up to a sum larger than the resultant. This is always the case. Remember, these are vector quantities not scalar quantities. The components do “add” up to 100 N, but only using vector addition (composition). So, when I ask you to estimate component vectors, do not force them to add back up to the resultant vector (in the traditional algebraic sense). Estimate the magnitudes of the components using the scale that you are given. <ENTER>

SLIDE 46: We will now move on to resolution of muscle force vectors other than shoulder girdle muscles. The horizontal and vertical reference does not generally work for other muscles in the body. Instead, the reference that we use for resolution of muscle forces other than shoulder girdle muscles is the mechanical axis of the bone to which the muscle attaches. The mechanical axis is essentially the longitudinal axis of the bone or segment. If you use this definition, you can draw a mechanical axis for any bone in the body. The mechanical axis then serves as your reference for resolution of muscle force vectors. You will resolve muscle force vectors in directions that run tangential (parallel) and normal (perpendicular) to the mechanical axis of the bone. That is because we are interested in how the bone slides (linear motion) parallel and perpendicular to this axis. Let’s look at some examples of this. <ENTER>

SLIDE 47: Remember, for muscles we are often interested in the rotational effects of the muscle on a given bone. For example, does the muscle cause flexion or extension of the bone about the joint? The techniques that we are learning right now help us understand the translational (linear) effects of the muscle on the bone – we will discuss rotational effects later. In this example, the resultant muscle force vector has already been drawn for you, and you are being asked to resolve this muscle force vector. Do you know which muscle is pictured here? The biceps femoris – one of the three hamstring muscles. The first step in the resolution process <ENTER> is to draw a line to represent the mechanical axis of the bone. This is going to be your reference for the vector resolution. You might ask, “Which bone?” Well, since we have drawn our force vector with the tail on the distal bone, then it must be the distal bone whose motion we are interested in. (Remember, for now, we assume that the distal bone is the moving bone.) Therefore, that is the bone that we want to draw the mechanical axis for. So, can you draw the mechanical axis for the tibia/fibula complex? <ENTER> Did you get it right? <ENTER>

SLIDE 48: The second step is to draw in the normal (perpendicular) component. You want to draw a component vector that runs perpendicular to the mechanical axis of the bone. Remember, your end result is going to be a rectangle that encloses the resultant muscle force vector. Can you draw the normal component? <ENTER> Did you get it right? <ENTER>

SLIDE 49: The third step is to draw in the tangential (parallel) component. You want to draw in a component that runs parallel to the mechanical axis of the bone. Remember, your end result is going to be a rectangle that encloses the resultant muscle force vector. Can you draw the tangential component? <ENTER> Did you get it right? It really does not matter whether you draw in the tangential or normal component first, but in my experience, students usually find it easier to draw in the normal component first. Again, do whichever works best for you. <ENTER>

SLIDE 50: The fourth step is to complete the rectangle to make sure that you have the lengths of your component vectors correct. <ENTER> You have now resolved a muscle force vector using the mechanical axis of the bone as your reference. Any questions? <ENTER>

SLIDE 51: How would you express the direction of the resultant muscle force? Well, to answer this question, we need to know which reference system is most appropriate to you – a relative system or an absolute system. Since we are dealing with motion of body segments, a relative system is more appropriate. However, this relative reference system is a little different than the one we discussed earlier for describing joint ROM. In this system, the mechanical axis is your reference point and the proximal end of the axis is considered 0°. Once you establish this, then you identify the position of the resultant muscle force vector relative to this zero point. In this example, let’s extend the mechanical axis a little further proximally and label it 0°. <ENTER> Now, can you locate the angle for the resultant muscle force vector? <ENTER> What is the magnitude of this angle? It is ~80-85°. This angle is called the muscle insertion angle. This will be the angle that you use to describe the direction of the resultant muscle force vector in future problems. How would you express the direction of the components? Well, at the simplest level, you would say that the forces act normal (perpendicular) and tangential (parallel) to the tibia. But, let’s put that in context by answering the question on the next slide. <ENTER> 

SLIDE 52: What are the linear effects produced by this muscle? Remember, we use vector resolution to help us understand how muscles move bones linearly. While this is not how we often think of muscles pulling bones, it is an important part of muscle function and has implications for joint stability and injury prevention. Look at the normal and tangential components of the pull of the biceps femoris. Can you describe the linear effects of the biceps femoris on the tibia/fibula complex and the knee joint? If we look at the tangential component, we can see that the muscle tends to pull the tibia/fibula into the femur, squeezing the joint together. This is called compression, thus, the muscle has a compressive effect on the knee joint. Is this good or bad? Well, it certainly depends on what other forces are doing about the knee joint, so we cannot really answer this question, but as a general rule, compression of a joint has the beneficial effect of stabilizing the joint. How about the normal component? It tends to pull the tibia/fibula in a way that makes it want to slide off of the femur. This is called a shear force, thus, the muscle tends to have a shear effect on the joint . The shear effect is in the posterior direction. Is this good or bad? Again, it certainly depends on what other forces are doing about the knee joint, so we cannot really answer this question.  However, by itself, this shear effect would not be desirable because as it attempts to slide the tibia/fibula off the femur, it would tend to stress the soft tissues around the joint. For now, you do not have to worry about understanding the applications of this vector resolution process, but you must be able to resolve muscle force vectors. <ENTER> 

SLIDE 53: If the resultant muscle force is 500 N, what is the magnitude of the components? The tangential component is ~100 N, and the normal component is ~450 N. Are you getting tired of this type of question? I hope so, and I hope that means that you have this concept down!  Let’s look at another example of resolving muscle force vectors parallel and perpendicular to the mechanical axis of the bone. <ENTER>

SLIDE 54: This diagram is another view of the biceps femoris muscle. However, the difference here is that the leg is not flexed as far in this example as in the previous example. That will change the linear effects of the muscle. Let’s resolve the muscle vector to see how. <ENTER> The first step is to draw a line to represent the mechanical axis of the bone. Can you do it? <ENTER> Did you get it right? <ENTER>

SLIDE 55: The second step is to draw in the normal component. Can you do it? <ENTER> Did you get it right? <ENTER>

SLIDE 56: The third step is to draw in the tangential component. Can you do it? <ENTER> Did you get it right? <ENTER>

SLIDE 57: The fourth step is to complete the rectangle to make sure that you have the lengths of your vectors correct. <ENTER>  <ENTER>

SLIDE 58: How would you express the direction of the resultant muscle force? Extend the mechanical axis and mark the proximal end as 0 degrees. Then estimate the muscle insertion angle. Can you do it? <ENTER> The muscle insertion angle is ~45 degrees. Given our discussion about the linear effects in the previous example, how would you express the direction of the components? The normal component still exerts a posterior shear force about the knee joint, and the tangential component still exerts a compressive force about the knee joint. However, there is a difference between this example and the previous example. Can you figure out what it is? <ENTER>

SLIDE 59: The difference is in the magnitude of the components. While the directional effect is the same for the normal and tangential components in both examples, the magnitudes of the shear and compressive forces are different in the two examples, even though the resultant vector for the biceps femoris is the same magnitude in each. The difference between these two examples is in the direction of R, which does affect component magnitudes. The practical application of this knowledge is that muscle function (in terms of linear effects) does change throughout the ROM at a joint as the muscle insertion angle changes. We will talk more about this in the future. <ENTER>

SLIDE 60: Now I am going to present several other examples of vector resolution in various contexts. Please make sure that you understand how to resolve the vectors as shown in each example. In the example shown on this slide, the red vector represents the weight of the person as he/she walks up the hill. We know that weight always acts vertically and acts at the COG of the person. So the vector is drawn accordingly. We want to resolve this vector, but can you figure out which directions would provide us with the most important information? The answer is that we want to resolve the vector in the directions that run parallel and perpendicular to the surface that s/he is walking on. Can you do this? <ENTER> Did you get it right? Why do you think these directions are most appropriate? Well, the component parallel to the slope gives us information about how gravity is opposing our motion up the hill, and helps us understand why walking uphill is harder. The component perpendicular to the slope will help better understand the friction that is acting on the person. The connection between gravity and friction may not be apparent to you right now, but suffice it to say that that is the application. <ENTER>

SLIDE 61: In this example, the force that is being exerted on the box is resolved into horizontal and vertical components. Why do you think these directions are most appropriate? Well, the horizontal component gives us information about the forces that are acting to slide the box horizontally. Can you figure out how to make the horizontal component larger? Pull harder, or pull at a lower angle. The vertical component helps us better understand the friction that is acting on the box. Again, the connection between gravity and friction may not be apparent to you right now, but suffice it to say that that is the application. <ENTER>

SLIDE 62: In this example, the force vector for the biceps brachii has been resolved normal and tangential to the mechanical axis of the bone in three different joint positions: A=15(, D=75(, and F=120(. <ENTER> Can you describe the differences in the normal component? The normal component is fairly small in A, and much larger in D and F, with approximately the same magnitude in D and F. In all three positions, the perpendicular component is directed anteriorly, thus it exerts an anterior shear on the joint. <ENTER>

SLIDE 63: Can you describe the differences in the tangential component? The tangential component is fairly large in A, and much smaller in D and F. In A and D, the direction of the component is towards the elbow joint, while in F, the direction of the component is away from the elbow joint, towards the wrist joint. Therefore, in A and D, it exerts a compressive effect on the joint and in F, it exerts a tensile (pulling apart) effect on the joint. <ENTER> Can you describe the differences in the muscle insertion angle? <ENTER> In A, the muscle insertion angle (MIA) is ~30(, in D ~80(, and in F ~110(. <ENTER>

SLIDE 64: In this example, the force vector for the deltoid muscle has been resolved normal and tangential to the bone. It just so happens that these directions coincide with the horizontal and vertical as well, but the reference is still the mechanical axis of the bone. Can you describe the linear effects of this muscle? The tangential component exerts a compressive force on the shoulder joint, while the normal component exerts a superior shear force on the joint. The muscle insertion angle has been identified for you, and is 20(. <ENTER>
SLIDE 65: In this example, the force vector for the weight of the forearm has been resolved normal and tangential to the mechanical axis of the bone in two different joint positions: B=30( and F=120(. Note that we have used the same reference in this example as we do for muscles. This is because we want to understand the linear effects about the elbow joint. How would you describe the linear effects of the weight of the forearm on the elbow joint. In B and F, the normal component exerts a posterior shear, although it is much larger in F. The tangential component is directed away from the elbow in B and towards the elbow in F. If you think back to the resolution of the biceps brachii, you can see how the biceps brachii works to offset the pull of gravity (or the weight of the forearm). Can you see that? <ENTER>

SLIDE 66: Finally, this is a figure that illustrates the lumbosacral joint with three different sacral angles – 30(, 45(, and 60(. The sacral angle represents the tilt of the sacrum, and thus the tilt of the lumbar spine in the sagittal plane. The W vector represents the weight of the body above the lumbosacral joint. This weight vector has been resolved normal and tangential to the sacral joint surface to determine the effects of the weight on the lumbosacral joint. You can see that as the sacral angle gets larger, the shear effect gets greater which means that certain tissues around the joint will be put under greater stress. Conversely, the compressive effect is greater at smaller sacral angles, which means that other tissues are put under greater stress at smaller sacral angles. Again, I do not expect you to learn the applications at this time, but I do expect you to be able to resolve any vector I give you into appropriate component vectors. <ENTER>

SLIDE 67: After this lecture, you should understand the value of vector analysis. For this class, we will use vector analysis to help us better understand forces and their effects. We will use these concepts throughout the rest of the semester as we discuss human movement and how to alter it to enhance performance and prevent injury. <ENTER>

SLIDE 68: For the next lecture unit, we will cover 

Lecture Topic #2

Subtopic C – Basic Kinetic Concepts

