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Abstract

Fixed kernel density analysis with least squares cross-validation (LSCVh) choice of the smoothing parameter is currently recommended for
home-range estimation. However, LSCVh has several drawbacks, including high variability, a tendency to undersmooth data, and multiple local
minima in the LSCVh function. An alternative to LSCVh is likelihood cross-validation (CVh). We used computer simulations to compare
estimated home ranges using fixed kernel density with CVh and LSCVh to true underlying distributions. Likelihood cross-validation generally
performed better than LSCVh, producing estimates with better fit and less variability, and it was especially beneficial at sample sizes <~50.
Because CVh is based on minimizing the Kullback-Leibler distance and LSCVh the integrated squared error, for each of these measures of
discrepancy, we discussed their foundation and general use, statistical properties as they relate to home-range analysis, and the biological or
practical interpretation of these statistical properties. We found 2 important problems related to computation of kernel home-range estimates,
including multiple minima in the LSCVh and CVh functions and discrepancies among estimates from current home-range software. Choosing an
appropriate smoothing parameter is critical when using kernel methods to estimate animal home ranges, and our study provides useful
guidelines when making this decision. (JOURNAL OF WILDLIFE MANAGEMENT 70(3):641-648; 2006)
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Home ranges are usually modeled from discrete observations, with
the resulting estimate often described quantitatively as the
utilization distribution (Kernohan et al. 2001). The utilization
distribution is an estimate of the probability of an animal
occurring in an area during a specified time (Worton 1995) and
can be used to predict where an animal occurred but was not
observed. Several methods have been introduced to estimate the
utilization distribution, including the bivariate normal (Jennrich
and Turner 1969), harmonic mean (Dixon and Chapman 1980),
and Fourier series smoothing (Anderson 1982). The most recent
and perhaps most commonly used method is kernel smoothing
(Worton 1989). The kernel density at any point in space is an
estimate of the amount of time spent there (Seaman and Powell
1996) and can be interpreted as the probability of an animal being
in any part of its home range (Powell 2000:75). Kernel methods
for home-range estimation are used widely and have been
suggested as the best available nonmechanistic home-range
estimator (Kernohan et al. 2001).

Kernel density estimation is a statistical technique for estimating
an underlying probability density function (e.g., utilization
distribution) from data (Silverman 1986). A bump (i.e., kernel)
is placed over each observation, and the value of the probability
density at any point in space is estimated by summing the
contribution from each kernel at that point. The width of each
kernel is called the smoothing parameter (4), window width, or
bandwidth. The smoothing parameter must be specified and has a
dramatic effect on the resulting estimate. The shape of the kernel
must also be specified but has little effect on the resulting estimate
compared to the choice of 4 (Silverman 1986). In general,
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Silverman (1986) suggested using any non-negative, symmetric
unimodal kernel.

Various methods of choosing the appropriate value of 4 have
been proposed based on statistical properties of the data (Silver-
man 1986, Jones et al. 1996). Two methods used extensively for
home-range analysis include LSCVh and a method that
determines the optimal 4 (4,,) for a standard multivariate normal
distribution (Worton 1989, 1995; Seaman and Powell 1996;
Seaman et al. 1999). The latter, 4,, also called 4, in Worton
(1995), is calculated

hopf =V 62 X n71/6

where o? is the average marginal covariance estimated from the x-
y coordinates of the samples (i.e., locations), and 7 is the number
of samples (Silverman 1986, Worton 1995). Because 4,,, was
developed for normal unimodal distributions, it oversmooths
multimodal data (Worton 1995). Seaman et al. (1999) compared
hgpr and LSCVh and concluded 4,,, generally performed poorly
compared to LSCVh.

Least squares cross-validation is based on minimizingA the
integrated square error between the estimated distribution f and
the true distribution

JU =17 = [72 =2ffr+ 1>
From this, Silverman (1986:48-49) derived the score function
LSCVh = [72 - 207" "7 (X))

where 7 is the number of observations, and f_; is the density
estimate without the data point X;. The smoothing parameter is
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chosen by minimizing LSCVh. Worton (1995:795) provided a
more-explicit version of LSCVh when a bivariate normal kernel
was used

1 1
L h = —
SCV h’n + 4nh?n?

n n _dl]2 —d,jz
X zl: 21: exp 2| 4exp 2
=1 j=

where 4j; is the distance between the ith and sth locations.

Because 4, is unreasonable for multimodal distributions (i.e.,
most animal home ranges), LSCVh has become the most popular
and recommended method for choosing 4 in home-range analysis
(Kernohan et al. 2001). However, LSCVh has several drawbacks,
including high variability (Park and Marron 1990, Jones et al.
1996), a tendency to undersmooth data (Sain et al. 1994), and
multiple local minima in the LSCVh function (Sain et al. 1994).
Therefore, it is important to investigate alternative methods for
choosing 4 (Seaman et al. 1999).

One alternative to LSCVh is CVh (Silverman 1986:52-55).
Unlike LSCVh that is based on minimizing the integrated
squared error, CVh is based on minimizing the Kullback-Leibler
distance between the true underlying and the estimated distribu-
tion. Likelihood cross-validation has general applicability beyond
choosing 4 in kernel density estimation, having been used for both
parameter estimation and model selection (e.g., Stone 1974,
1976). The CVh smoothing parameter is chosen by minimizing

the score function

CVh=—n"" Zlogi/}fi(X,)
=1

over possible values of 4 (Silverman 1986:53).

Our goal was to evaluate the performance of CVh versus
LSCVh methods for choosing the smoothing parameter in fixed
kernel home-range analysis. In particular, we were interested in
measuring the fit of estimated utilization distributions using CVh
and LSCVh to a known underlying distribution. Because of the
tradeoff between bias and variance in data-based bandwidth
selectors (Jones et al. 1996), we were also interested in
determining whether CVh or LSCVh consistently chose values
for 4 that were too large or too small or whether either was an
excessively variable estimator. Last, we investigated computational
considerations such as the presence of multiple minima in the
CVh and LSCVh functions and consistency of computation
among current home-range software.

Methods

Simulations

We used simulated utilization distributions to represent an
animal’s true home range similar to Seaman et al. (1999).
Simulated utilization distributions were unimodal and multimodal
bivariate normal mixtures. By using simulated distributions, we
were able to directly compare kernel estimates using LSCVh and
CVh to a known underlying utilization distribution. We simulated
6 types of home ranges, including a circular normal and 1, 2, 4, 8,
and 16 mode bivariate normal mixes. The circular normal had a

mean X and Y at (0,0), standard deviations sd, = sd, = 1, and

covariance p = 0. Parameter values for the bivariate normal mixes
were randomly selected from uniform distributions with means (X,
Y) ranging 0-20, standard deviations ranging 1.5-6, covariance
ranging —1 to 1, and mixing proportions selected from 0 to 1 with
the constraint that the sum of the proportions equaled 1.

For the 5 types of bivariate normal mixes, we simulated 30
realizations by selecting different parameter values for each
realization. Therefore, we simulated 151 different home ranges
(i.e., 150 bivariate normal mixes and 1 circular normal). To
simulate animal-location data, we drew random samples of 10, 15,
20, 40, 80, 150, and 300 points. We simulated 100 replicate
samples for each home range and sample size.

We calculated fixed kernel density estimates for each sample of 7
locations using a standard bivariate normal kernel by

Fe.y) 27mh22 (2/2>

where 4 is the smoothing parameter, and d; is the distance of the
ith observation from the x, y-coordinate. We determined values of
A by numerical optimization for each method (Press et al. 1986)
with a fractional precision of 0.01.

Surface Fit

We were interested in whether a better fit was obtained at a given
sample size over a wide range of possible home-range shapes using
LSCVh or CVh. We measured fit as the discrepancy between a
simulated utilization distribution and the estimated utilization
distribution. Therefore, for a given sample size, we took the mean
difference between the LSCVh discrepancy and the CVh
discrepancy.

We used 2 measures of discrepancy, integrated squared error
(ISE) and Kullback-Leibler Distance (KL), because they are
purportedly minimized by LSCVh and CVh, respectively (Silver-
man 1986). We assessed each measure of discrepancy over a
regular grid of points bounded by the 99.9% contour of the
simulated utilization distribution. We approximated integrated
squared error by a discrete set of grid cells using

A

u n 2
ISE(f.f) =Y [0, =7 ()]
i=1
where 7 = the number of grid cells, x = vector of grid coordinates,
Jf = estimated probability for the grid cell, and /= the true
simulated probability for the grid cell.
We approximated Kullback-Leibler distance using

Zf % (Inf(x), = Inf (x),).

We examined the relative improvement of surface fit due to
choice of smoothing parameter versus increasing sample size by
plotting median discrepancies using CVh and LSCVh across
sample sizes 15-300. Because of possible differences in variability,
we also plotted the 97.5% quantile at each sample size. We used
medians and quantiles because the distributions of discrepancies

for KL and ISE were positively skewed.

Bias
We assessed whether LSCVh or CVh generally selected too large
(ie., oversmoothed) or too small (i.e., undersmoothed) an 4 by
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Figure 1. Percent of simulations where the estimated distribution using CVh
was closer (i.e., smaller discrepancy) to the true utilization distribution than
LSCVh. If both methods were similar, we would expect CVh to be closer 50%
of the time.

comparing the value of the estimated smoothing parameter (/;)
using LSCVh and CVh to the best-possible smoothing parameter
for a given sample of locations. We determined the best-possible
smoothing parameter (/) by finding the value of 4 that
minimized the discrepancy between the true underlying utilization
distribution and the estimated utilization distribution using ISE
(ISEh) and KL (KLh). To measure whether too small or too large
a value was chosen, we calculated a percent bias for each sample of
locations using

A

(h - hbest)/hbest X 100
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Figure 2. Mean difference in (a) Kullback-Leibler distance, and (b) integrated
squared error between the true underlying distribution and the distributions
estimated using CVh and LSCVh. Vertical bars represent 95% confidence
intervals.

where /i was selected using CVh and LSCVh, and 4, was
selected using KLh and ISEh. For this analysis, we simulated 10
realizations of bivariate normal mixes (i.e., 1, 2, 4, 8, 16 mode) and
generated 50 replicate samples from each distribution. Sample
sizes were 10, 15, 25, 50, 75, 100, and 300. Therefore, for each
sample size, we compared 2,550 values of CVh, LSCVh, KLh,
and ISEh.

Computational Considerations

We searched for multiple minima in the LSCVh or CVh
functions by generating 25 utilization distributions (i.e., 5
replicates of 1, 2, 4, 8, and 16 mode distributions) and generating
35 sets of samples from each distribution (i.e., 5 replicates for each
sample of size 10, 15, 20, 40, 80, 150, and 300). These simulations
generated 875 sets of samples from which we calculated 4 using
CVh and LSCVh. Because multiple minima only become evident
by viewing a plot of the CVh and LSCVh functions versus a range
of 4 values, we narrowed our search by taking the 10 samples with
the largest percent difference between 4 chosen by CVh and
LSCVh. We then graphed the CVh and LSCVh functions over
values of A.

To determine consistency among home-range software in
computing LSCVh, we used the test data associated with
KERNELHR and calculated the 90% contour, with LSCVh
smoothing, using our algorithm and 3 common home-range
programs, Animal Movement, KERNEL HR, and HOME
RANGE.

Results
Kullback-Leibler Discrepancy

When KL was used as the measure of discrepancy, home-range
estimates using CVh fit better, had less bias, and were less variable
than estimates using LSCVh. If CVh and LSCVh performed
similarly, we expected CVh to produce a better fit in half of the
simulations, and LSCVh to produce a better fit in the other half.
However, we found a better fit was obtained using CVh in 64.0%
of the simulations (Fig. 1). Mean KL between the estimated and
true distribution was smaller when CVh was used than LSCVh
(Fig. 2a). Plots of median KL revealed little difference between
CVh and LSCVh when compared to the effect of sample size
(Fig. 3a). However, the 97.5% quantiles used to depict rare but
possible estimates showed that if LSCVh was used, sample sizes
would have to increase dramatically to obtain the same fit as when
CVh was used (Fig. 4a). When comparing CVh and LSCVh to
the best possible /4 found by minimizing KL, we found CVh
oversmoothed the location data by 2-5%, whereas LSCVh
oversmoothed at sample sizes <~20 and undersmoothed the data

by as much as 10-15% at sample sizes >~50 (Fig. 5a).

Integrated Squared Error Discrepancy

When ISE was used as the measure of discrepancy, performance
(ie., fit, variability, bias) of CVh versus LSCVh was dependent on
sample size with CVh generally outperforming LSCVh at sample
sizes <~50, whereas LSCVh generally outperformed CVh at
sample sizes >~50. A better fit was obtained in more simulations
when CVh was used at sample sizes <~60, while a better fit was
obtained in a greater percentage of simulations using LSCVh
when sample sizes were >~60 (Fig. 1). Mean ISE between the
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Figure 3. (a) Median Kullback-Leibler distance, and (b) integrated squared
error between known underlying distributions and distributions estimated using
CVh and LSCVh. Median values were used to determine the relative influence
of sample size vs. method for choosing the smoothing parameter.

estimated and true distribution was smaller when CVh was used
than LSCVh at sample sizes <~40, whereas LSCVh produced
better estimates at sample sizes >~40 (Fig. 2b). There was little
difference in median ISE between CVh and LSCVh when
compared to the effect of sample size (Fig. 3b). However, similar
to when KL was used as the measure of discrepancy, larger
differences became evident in the 97.5% quantiles used to depict
rare but possible combinations of utilization distributions and
locations. In these cases, choice of smoothing parameter was
important when compared to the effect of sample size, especially
at larger sample sizes (Fig. 4b). When comparing the CVh and
LSCVh to the best possible 4 found by minimizing ISE, both
CVh and LSCVh oversmoothed the location data (Fig. 5b).

Computational Considerations
Plots of the LSCVh and CVh functions versus 5 revealed that 2 of
the 10 sets of sample locations produced multiple minima in the
LSCVh function, and 1 of the 10 sets of samples produced
multiple minima in the CVh function (Fig. 6). In both cases, our
algorithms for CVh and LSCVh found the global minima.
Home-range boundaries were substantially different between
program Animal Movement and the other programs (Fig. 7). The
only consistency was between our program and HOME RANGE.
KERNELHR selected LSCVh in each dimension (i.e., x and y),
and Animal Movement substantially oversmoothed the data.
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Figure 4. The 97.5% quantile ranges for (a) Kullback-Leibler distance, and (b)
integrated squared error between known underlying distributions and
distributions estimated using CVh and LSCVh. Quantiles were used to
determine the relative influence of sample size vs. method for choosing the
smoothing parameter.

Discussion
Worton (1995) suggested that choosing the appropriate level of

smoothing is the most important factor when using the kernel
method for home-range analysis. Estimated distributions can vary
greatly depending on which method is used to select the
smoothing parameter (Fig. 8). Thus far, 2 methods for choosing
the smoothing parameter in kernel home-range analysis have been
investigated, with LSCVh performing better than 4,,, (Seaman
and Powell 1996, Seaman et al. 1999). We found CVh generally
outperformed LSCVh and was especially beneficial at sample sizes
<~50 (Table 1).

We generally recommend using CVh for choosing the smooth-
ing parameter in home-range analysis, but in some cases,
performance depended on which measure of discrepancy was
used. Linhart and Zucchini (1986:16) discussed both ISE and KL
but only suggested selecting the measure of discrepancy, “. . .that
is appropriate for the problem in hand.” Therefore, it is important
to understand the statistical properties of each measure of
discrepancy and the biological or practical interpretation of these
properties as they relate to home-range estimation.

Kullback-Leibler distance was derived from information theory
(Kullba}ck 1959) and has been described as the “information lost
when f(x) is used to approximate f(x)” (Burnham and Anderson
1998:37). Kullback-Leibler distance is widely accepted as a
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Figure 5. Percent relative bias of CVh and LSCVh when compared to the best
smoothing parameter found by minimizing the (a) Kullback-Leibler distance,
and (b) integrated squared error between the true and estimated utilization
distributions.

measure of discrepancy because of its connection with information
theory and has increasingly been suggested as the basis for model
selection in wildlife science (Burnham and Anderson 1998;
Anderson et al. 2000, 2001; Garton et al. 2005). The technique
of squaring errors was originally used to provide unbiased
parameter estimates because of its connection to the variance of
the estimator (Berger 1980). It is likely a popular measure of
discrepancy because of familiarity gained from its relationship to
classical least-squares theory and because calculations are relatively
straightforward and simple (Berger 1980).

We suggest 2 major differences between KL and ISE as
measures of discrepancy important for home-range analysis. First
is their sensitivity to extreme values. Because ISE is based on
squared differences and KL is based on log differences, ISE
penalizes large discrepancies more severely than KL (Fig. 9). The

second difference is their sensitivity to the location of the
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Figure 6. Plots of standardized (i.e., 0 to 1) LSCVh and CVh functions over a
range of smoothing parameter (h) values. Plots illustrate presence of multiple
minima in the functions.

discrepancy in the sample space. Integrated squared error treats
discrepancies equally across the sample space, but because the log
differences of KL are then multiplied by f(x), KL penalizes
discrepancies in high use areas more severely than low use areas.

Because of the sensitivity to outliers, minimizing ISE is
susceptible to giving too much weight to clusters of locations or
missing locations uncharacteristic of the true utilization distribu-
tion. This property of squared error has caused some to suggest
that it may be overly sensitive to outliers (Berger 1980). Any
problems estimating the home range due to uncharacteristic
locations would be magnified by minimizing ISE. Practical aspects
to obtaining locations on animals that are likely to result in these
uncharacteristic locations include serial autocorrelation (Swihart

and Slade 1995) and biased observation rates (Johnson et al. 1998).

Table 1. Summary conclusions® of the best method® for choosing the smoothing parameter in fixed kernel home-range analysis.

Sample size < 50

Sample size >50

Surface fit Bias Variablilty Surface fit Bias Variability Overall conclusion
KL CVh CVh CVh CVh CVh CVh CVh
ISE CVh LSCVh CVh LSCVh LSCVh LSCVh LSCVh
Overall conclusion CVh none CVh none none none

@ Conclusions were based on 3 measures of performance, including surface fit, bias, and variability, and 2 measures of discrepancy, including Kullback-

Leibler distance (KL) and integrated squared error (ISE).

® The 2 methods evaluated for choosing the smoothing parameter included likelihood cross-validation (CVh) and least squares cross-validation (LSCVh).
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Because KL penalizes discrepancies in high use areas more
severely than low use areas, we suggest home-range analysis
should seek to minimize KL when interest is in the high use areas
of the utilization distribution. There are several practical aspects of
home-range estimation that suggests researchers should concen-
trate on high use areas. Among these are statistical problems
associated with estimating the tails of a distribution as well as
ecological reasons. For example, Seaman et al. (1999) recom-
mended that future home-range studies focus on areas of high use
because of unreliable kernel estimates in the outer contours of the
utilization distribution. Samuel et al. (1985) and Powell (2000)
suggested that estimating the core home range (i.e., most heavily
used areas) is an important component in understanding the
ecological factors affecting an animal’s space use. And recently,
Marzluff et al. (2004) suggested a new analytic technique that
used areas of high use estimated from kernel density to determine
resource preferences for Steller’s jays (Cyanocitta steller).

If the goal is to minimize KL between the true and the
estimated distribution, then CVh performed better than LSCVh
at all sample sizes and across all measures of performance (i.e.,
surface fit, variance, bias). Although CVh did perform better than
LSCVh at a given sample size, our results supported the
conclusions of Seaman et al. (1999) that the fit of estimated
distributions using the kernel method was usually more sensitive
to sample size than choice of smoothing parameter. For most
utilization distributions and most samples of locations from these
distributions, the choice of smoothing parameter had little effect
on the resulting estimate when compared to increasing sample
size. Differences between smoothing methods became evident
only for certain combinations of utilization distributions and
samples when the estimates differed substantially even when
compared to the effect of sample size.

If the goal is to minimize ISE between the true and the
estimated distribution, we found LSCVh produced estimated
distributions with smaller integrated square errors than CVh but
only at larger (i.e., >~50) sample sizes. Seaman et al. (1999)
reported very poor performance of LSCVh at sample sizes ranging
10-30. We found CVh produced better estimates at these smaller
sample sizes even when ISE was used as the measure of
discrepancy.

Bias versus Variance

Data-based methods for choosing the smoothing parameter seem
to have an intrinsic tradeoff between minimizing bias versus
variance (Jones et al. 1996). A biased method would consistently
produce estimated distributions that either oversmooth or under-
smooth the data. Highly variable methods may be unbiased over
multiple samples from a single distribution, but a single sample
may produce an estimate far from the true distribution.

The tendency of an estimator to select biased values of 4 will
affect home-range estimates differently depending on whether 4 is
biased too small (i.e., undersmoothed) or to large (i.e., over-
smoothed). Undersmoothed data would tend to show structure
where there is none and would result in smaller and more disjunct
home-range contours. Oversmoothed data would result in larger,
more contiguous home ranges. Our results generally supported the
conclusions of Sain et al. (1994) that LSCVh is likely to
undersmooth data especially when compared to CVh. In addition
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Figure 7. Fixed kernel estimates of the 90% contour using 4 home-range
programs: (a) Animal Movement, (b) our algorithm and program HOME
RANGE, and (c) KERNEL HR. For all estimates and programs, LSCVh was
selected to choose the smoothing parameter.
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Figure 8. Fixed kernel density contours for an adult female ocelot (Felis pardalis) studied in 1996 using (a) LSCVh, (b) CVh, and (c) reference methods for

choosing the smoothing parameter.

to our simulation results, the kernel estimate using LSCVh
appeared to undersmooth both example data sets (i.e., Figs. 7, 8),
resulting in many disjunct contours.

Because wildlife researchers must estimate the home range from
a single sample of locations, a highly variable method would likely
be more problematic than a method that is slightly biased. Many
authors consider LSCVh to be an extreme case in the bias versus

variance tradeoff producing unbiased but highly variable estimates
(Park and Marron 1990, Jones et al. 1996, Kernohan et al. 2000).

Computational Considerations

Values for LSCVh and CVh must be found by minimizing their
respective functions numerically (Silverman 1986, Worton 1995).
When a numerical technique finds a minima, it can either be
global (i.e., the true lowest point in the function) or local (i.e., the
lowest point only within a certain neighborhood of the function).
The simplex method we used as well as the other methods
described in Press et al. (1986) are not guaranteed to find the
global minima. Therefore, methods for choosing the smoothing
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Figure 9. Relationship between squared difference and log difference to
absolute difference used to illustrate the weighting of outliers for squared error
and Kullback-Leibler distance relative to the absolute difference.

parameter producing frequent local minima would present a
problem for home-range analyses. Least squares cross-validation is
known to produce local minima (Park and Marron 1990), and we
found multiple minima in both CVh (1 of 10) and LSCVh (2 of
10) functions. Because of the small number of functions we
graphed, we were unable to determine whether LSCVh is more
likely to produce local minima than CVh.

We were surprised to find such a large discrepancy in the
estimated home range computed by the Animal Movement
program when LSCVh smoothing was selected. The 90% contour
calculated by Animal Movement was 1.4 times larger than that
computed by our program and program HOME RANGE.
Consistency among methods for analyzing data is imperative for
making comparisons among different studies. This consistency
can be corrupted if different home-range programs supposedly
using the same method for choosing the smoothing parameter are
in fact not using the same algorithm.

Management Implications

It is unlikely that any method for selecting the smoothing
parameter for kernel home-range analysis will be a panacea for
inadequate sample size. However, due to animal mortality, lost
contact, and/or logistics, studies are often limited in the number of
locations that can be collected and the question arises, “for a given
sample size, how should I choose the smoothing parameter?”
Regardless of research objectives, if sample sizes are <~50, we
recommend using CVh. We also recommend using CVh if
researchers are more concerned with obtaining good estimates in
high use areas or if researchers seek a conservative approach to
dealing with lack of independence among locations or mitigating
location acquisition bias. We recommend using LSCVh if
researchers are interested in estimates of the tails of the utilization
distribution but only if sample size is sufficiently large. Future
research should determine the frequency of local minima in the
CVh or LSCVh functions using data from actual field studies.
Until then, we encourage researchers to plot the LSCVh and/or
CVh functions over a range of potential values for the smoothing
parameter.
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