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a b s t r a c t

We propose a simple multivariate model for describing and understanding animal space use

that estimates an animal’s probability of occurrence as an explicit function of the animal’s

association with a fixed spatial area (i.e., home range), the spatial distribution of resources

within that area, and the occurrence of other animals. We begin with a null model of space

use to describe an animal’s utilization distribution in the absence of effects from environ-

mental covariates. We then use this null model as the foundation for a set of candidate

models of space use that incorporate different combinations of environmental covariates

where each model is chosen to reflect various hypotheses about important drivers of space

use. Models are parameterized via maximum likelihood using location data collected from

individuals at discrete times (e.g., telemetry) and spatially explicit environmental covari-

ates. Information theoretic criteria are used to select the model(s) with most support from

the data. The best model(s) is then used for both estimating the animal’s home range and

for inferring the relative importance of various environmental factors on space use. As an
example, we applied our approach using male white rhino (Ceratotherium simum) location

data collected in Matobo National Park, Zimbabwe. The best synoptic model was able to cap-

ture the complexities of the utilization distribution while the model structure and parameter

estimates provided a basis to infer the importance of various ecological factors affecting

.

and prey; Wauters et al., 2000).
male rhino space use

1. Introduction

Understanding animal space use is a critical component of
many ecological investigations. Because animal space use
is the result of physiological and behavioral adaptations to
particular environmental characteristics, ecologists have long
sought to describe where animals live and, more impor-

tantly, to understand the important factors affecting space
use. Among the most prominent and widespread of these
factors are: (1) the tendency for animals to remain in a par-
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ticular area or home range due to site fidelity (Smith, 1976;
Shields, 1983; White and Garrott, 1990; Wauters et al., 2001;
Selonen and Hanski, 2003) or territorial behavior (Burt, 1943;
Ostfeld, 1990; Newton, 1992; Adams, 2001); (2) the distribution
of required or selected resources (Bergerud, 1974); and (3) the
location of other animals (e.g., mates, competitors, predators
edu (E.O. Garton), jrachlow@uidaho.edu (J.L. Rachlow).

One of the most common factors affecting animal space
use is the tendency for most animals to confine their activities
to a particular area or home range (Burt, 1943). This tendency
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the tendency to remain in an area. While it may be quite unre-
e c o l o g i c a l m o d e l l i n

ight be the result of territorial behavior (Krebs and Davies,
991; Adams, 2001), the need to continually provision a den
r nest site, or behavior designed to increase knowledge of
he location of important resources (Powell, 2000) or escape
outes (Stamps, 1995). Within a home range, many animals
electively use certain habitats more than others. Because of
n ultimate association with food and escape cover, habitat
election is typically assessed for environmental characteris-
ics such as plant species composition, vegetation structure,
nd topography (Morrison et al., 1998). Beyond site fidelity and
abitat selection, the presence or absence of other animals
lso may affect space use. Pressures of avoidance and attrac-
ion are usually related to mating opportunities (Emlen, 1973),
redator–prey relationships (Mech, 1977; Murray et al., 1994)
r competition (Pimm and Rosenzweig, 1981; Maurer, 1984;
orris, 1987).

Two general approaches have been taken for studying ani-
al space use. One is a mechanistic approach that seeks to
odel animal space use using fundamental models of ani-
al movement processes (Moorcroft and Lewis, 2006). Under

his approach, general diffusion-advection models are built
ased on hypothesized behaviors (e.g., attraction to a home
ange center and aversion to foreign scent marks) governing
n animal’s movements. This is a powerful approach because
ypothesized determinants of space use can be directly incor-
orated into the models and predictions from the models can
e compared against observed location data to identify sup-
ort for different hypotheses. Additionally, these models can
e used to predict changes in space use resulting from changes

n behavior or the spatial distribution of important factors.
owever, despite the power of this approach it is not widely
sed by ecologists likely due to computational expense and

ack of generality (Kernohan et al., 2001).
The second approach is to estimate relevant parameters

rom a general, statistical model fit to observed location data.
or example, animal home ranges are often estimated by fit-
ing one or more statistical models (e.g., bivariate normal,
ernel density) to location data obtained on a particular indi-
idual. While this approach often results in quite realistic
epresentations of space use, it lacks an explicit connec-
ion to the behavioral and ecological process affecting animal
pace use, thus researchers must rely on post hoc analyses to
nfer anything about generating mechanisms of the observed
pace use. Similarly, analyses of resource selection within an
nimal’s home range often begins by estimating the home
ange with one of the aforementioned statistical models and
hen comparing observed use of resources to their availabil-
ty within the home range boundary (e.g., Borger et al., 2006;
homas and Taylor, 2006).

Although the statistical modeling approach has tradi-
ionally analyzed each process (e.g., home range, resource
election, relationships among individuals) separately, recent
ork relating animal movements and resource selection has

tressed the benefits of modeling these processes simulta-
eously. For example, Matthiopoulos (2003b) described an
pproach for modeling habitat preference as a function of

ccessibility and preference based on possible movement
aths. Similarly, Rhodes et al. (2005) suggested that mod-
ls used to infer habitat selection should take into account
he probability of selecting a habitat dependent on its spatial
4 ( 2 0 0 8 ) 338–348 339

context within the home range. Therefore, to study habitat
selection, Rhodes et al. (2005) developed a model of the proba-
bility of moving from one location to the next as a function of
the animal’s current location, the distance to the home range
center, and habitat selection. With a similar goal in mind, we
describe a synoptic model for describing and understanding
space use of individual animals that simultaneously models
space use as a function of multiple, interacting behavioral
and environmental factors. Our model differs from that of
Matthiopoulos (2003b) and Rhodes et al. (2005) in that instead
of modeling the movement process, we take a more general
approach by modeling the resulting utilization distribution as
a function of environmental covariates. The synoptic model
is closest to what May (1978) characterized as a phenomeno-
logical model intermediate in complexity between general,
statistical models and complex, mechanistic models based on
detailed behavioral processes.

2. A synoptic model of space use

To model the space use of a particular animal, we begin with
the assumption that the individual under investigation has
a true distribution of space use in an area over the analysis
period. Often called the utilization distribution, this distribu-
tion is a quantitative measure of the relative time spent in an
area over the period of study (Jennrich and Turner, 1969; Van
Winkle, 1975; Katajisto and Moilanen, 2006). Specifically, we
define s(x) as a function describing the probability density of
finding the animal under investigation at location x during the
period of study (i.e., utilization distribution). We recognize that
the form of s(x) is the result of species-specific behaviors and
life history strategies as well as individual responses to the
spatial and temporal distribution of environmental factors.
Our data consist of a vector of n spatial coordinates (i.e., loca-
tions) taken at discrete times that are assumed to be a sample
of independent observations from s(x). Associated with each
location are the values of k environmental variables that will
be used as covariates to model an individual’s utilization dis-
tribution.

Instead of fitting a single model to the data, we suggest
researchers formulate a set of models reflecting different
assumptions and/or hypotheses about an individual’s space
use. If the models are constructed based on ecological
hypotheses, then an information theoretic approach can be
used to determine the relative support for each model and
thus the relative degree of support for the corresponding eco-
logical hypothesis (Burnham and Anderson, 2002; Johnson and
Omland, 2004; Horne and Garton, 2006). Thus, the model(s)
with the most support from the data can be used not only as
an estimate of s(x), but also to infer the importance of various
ecological factors affecting space use (Richards, 2005).

To guard against problems of over- and under-fit models,
we suggest that researchers include models of varying com-
plexity in the candidate set starting with a simple or “null”
model of space use that assumes no other influence except
alistic to expect any animal to utilize space independent of
any environmental effects, this model is an important start-
ing point in that additional environmental covariates will only
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Fig. 1 – Schematic of a synoptic ap

be included if there is sufficient support from the data. This
initial model then serves as the basis for additional models of
increasing complexity that are constructed by adding various
combinations of environmental covariates. Actual variables
will be species and hypothesis specific but should be selected
based on a priori knowledge of a suspected influence on space
use. After selecting the model with appropriate complexity,
this model can then be used to estimate the utilization dis-
tribution, infer important drivers of space use, and to test
ecological hypotheses (Fig. 1).

2.1. Synoptic model description

Similar to Manly et al. (1974, 2002:77) our model structure is
based on the idea that there is a proportional change in use of
an area attributable to each environmental covariate. First, we
set f0(x) as the null model of space use in the absence of any
effect from environmental covariates. The null model is cho-
sen to describe the utilization distribution resulting from the
behavioral and spatial processes in aggregate that give rise to
an animal’s home range. For example, f0(x) could be a bivariate
normal distribution characterizing the space use of an animal
that biases movements towards a central place (Dunn and
Gipson, 1977; Okubo, 1980) or the exponential power model
that allows for a more uniform distribution of space use (Horne
and Garton, 2006).

Next, we assume a proportional increase or decrease in
f0(x) caused by a spatially explicit environmental covariate
where H(x) is a function describing the environmental covari-
ate. In the case of categorical variables, H(x) can be an indicator
function with H(x) = 1 if x is within the category type and 0
otherwise. For continuous covariates, H(x) can equal the value
of the environmental variable at position x, suggesting a lin-
ear relationship between the proportional change and the

value of the variable or be some function of the environmental
variable for non-linear relationships. Thus, a synoptic model
describing the utilization distribution that incorporates a pro-
portional increase or decrease in f0(x) caused by including one
ch to modeling animal space use.

covariate is

s(x) = f0(x) + ˇH(x)f0(x)∫
x
[f0(x) + ˇH(x)f0(x)]

(1)

where ˇ is an estimated selection parameter controlling the
magnitude of the effect. To ensure s(x) ≥ 0 (i.e., non-negative
probability) and integrates to one, we set ˇ ≥ −1 and standard-
ize H(x) to range from 0 to 1.

For models with multiple interacting covariates, we
assume that any additional covariate results in a proportional
change in the utilization distribution. Thus, for i = 1 to k covari-
ates the synoptic model of space use is

s(x) =
f0(x)

k∏
i=1

(1 + ˇiHi(x))

∫
x

[
f0(x)

k∏
i=1

(1 + ˇiHi(x))

] . (2)

The denominator of Eq. (2) is the normalizing factor for
a weighted distribution (Patil and Rao, 1978; Lele and Keim,
2006) and for most combinations of initial models and envi-
ronmental covariates will be analytically intractable. As an
approximation, we suggest dividing the landscape into m dis-
crete grid cells and calculating

A

m∑
j=1

[
f0(xj)

k∏
i=1

(1 + ˇiHi(xj))

]
≈

∫
x

[
f0(x)

k∏
i=1

(1 + ˇiHi(x))

]

where A is the area of each grid cell. Instead of calculating the
approximation across the entire landscape, the extent of the
grid can be fixed to incorporate nearly all (e.g., >0.99) of the
cumulative probability.
The synoptic model s(x) is a probability density function
with parameters describing the null model of space use f0(x),
symbolized by �, and the k-dimensional vector of selection
parameters ˇ describing the selection for or against environ-
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ental covariates. These parameters can be estimated for a
iven a set of q = 1 to n observed locations xq by maximizing
he log-likelihood function

(�, ˇ) =
n∑

q=1

ln

⎡
⎢⎢⎢⎢⎣

f0(xq|�)

k∏
i=1

(1 + ˇiHi(xq))

∫
x

[
f0(x|�)

k∏
i=1

(1 + ˇiHi(x))

]
⎤
⎥⎥⎥⎥⎦ (3)

or our example application of the synoptic model, we max-
mized the log-likelihood function numerically using the
implex algorithm (Press et al., 1986) programmed in Visual
asic. However, we suggest future applications of the synop-
ic model could make use of an improved technique called
data cloning” for calculating maximum likelihood parameter
stimates and their standard errors (Lele et al., 2007).

.2. Interpretation of model structure and parameters

hile we do not wish to suggest there is a single model
tructure that must be used to apply our general approach,
he model described by Eq. (2) has several desirable properties.
irst, the null model of space use f0(x) represents our hypoth-
sis as to how the animal would use space in the absence
f any effects from environmental covariates. Thus, if f0(x) is
ased on hypothesized movement processes (e.g., a bivariate
ormal from centrally biased random walk or a uniform
istribution for a territorial animal), then the synoptic model
llows researchers the opportunity to link mechanistic-based
ssumptions of animal movement to a statistical model of
pace use.

Second, there is a straightforward interpretation of the
election parameters for each environmental covariate in rela-
ion to their effect on space use. Because Eq. (2) represents the
robability of occurrence for a given set of values of the envi-
onmental covariates, we can use odds ratios to determine
he importance of a single or combination of environmental
ovariates on space use where the odds ratio represents the
roportional change in the utilization distribution resulting
rom a change in the value(s) of the environmental covari-
te(s). This odds ratio for one set of covariate values H(a) versus
nother H(b) is calculated as

(a, b) =

k∏
i=1

(1 + ˇiHi(a))

k∏
i=1

(1 + ˇiHi(b))

. (4)

If interest is in a single covariate j, when the values for all
ther covariates are fixed (i.e., Hi,i�=j(a) = Hi,i�=j(b)), Eq. (4) simpli-
es to

j(a, b) = 1 + ˇjHj(a)
. (5)
1 + ˇjHj(b)

The odds ratio for covariate j can be interpreted as how
uch more or less likely we are to find the animal in an area

or a given value of Hj(a) versus another value Hj(b). For exam-
4 ( 2 0 0 8 ) 338–348 341

ple, if Hj were a habitat type, ı̂j is an estimate of how much
more or less likely the animal is to be in that habitat type (i.e.,
Hj(a) = 1) versus out of that habitat type (i.e., Hj(b) = 0). When
ı = −1 to 0, there is a proportional decrease in the utilization
distribution, when ı = 0 there is no change, and when ı > 0 there
is a proportional increase. Because negative associations are
scaled differently than positive associations, it is important to
recognize these differences when interpreting ı. For example,
a negative change of ı = –0.5, meaning the animal is half as
likely to be found in an area, would be the same magnitude as
a positive effect of ı = 2 which means it is twice as likely to use
the area. Thus, the estimated selection parameters ( ˆ̌ s) pro-
vide a way to estimate the proportional change in space use
attributable to each covariate in isolation or in combination
with other model covariates.

We can also evaluate the effect of each covariate in relation
to changes in the null model of space use. Also from Eq. (2), the
proportional change in the null model of use at any position x
is given by

k∏
i=1

(1 + ˇiHi(x))

∫
x

[
f0(x)

k∏
i=1

(1 + ˇiHi(x))

] (6)

When covariates are categorical and non-overlapping the
proportional change in the null model caused by covariate j is

(1 + ˇj)∫
x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)] . (7)

We note that under the special case when f0(x) is uniform,
Manly’s selection ratio (Manly et al., 2002:77) is a consistent
estimator of Eq. (7) (see Appendix A).

In addition to estimates of odds ratios and selection ratios
for each individual, researchers may also be interested in
the population-level effect of each covariate. As our synop-
tic model is an estimate of an individual’s space use, we refer
readers to several recent developments in the application of
mixed effects models to gain population-level understand-
ing from individual-based models of space use (e.g., Borger
et al., 2006; Gillies et al., 2006; Thomas et al., 2006). Our synop-
tic model is particularly amenable to the approach developed
by Thomas et al. (2006) in which an individual-level model
describing the probability of use is incorporated as a “data
model” (i.e., Eq. (1), Thomas et al., 2006:406). Thus, to gain
population-level estimates of selection, one would substitute
our synoptic model for the data model in Thomas et al. (2006).

3. Example: space use of male white rhinos

As an example of how our synoptic model can be tailored
to investigate a particular species’ space use, we used loca-

tion data collected on three adult male white rhinos from
March 1994 to January 1995 in Matobo National Park, Zim-
babwe (Rachlow et al., 1999). Matobo Park in southwestern
Zimbabwe is characterized by steep, granite outcrops and
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tobo
Fig. 2 – White rhinos in Ma

boulders interspersed among mixed savanna vegetation that
varies from open grasslands to dense shrub and woodlands
(Fig. 2). Social behavior of adult white rhinos and patterns
of space use differ dramatically between sexes. While adult
females use non-defended areas that overlap widely among
individuals (Rachlow et al., 1999), adult males mark territories
with ritualistic defecation and urination behaviors, defend-
ing those territories against other adult males (Owen-Smith,
1971). Space use within home ranges appears to be influenced
by a preference for short grass swards for foraging and the
inability to readily negotiate steep rocky areas.

3.1. Candidate models, model selection and
interpretation

Following the approach outlined in the previous section, we
hypothesized that male space use might be influenced by: (1)
territorial behavior; (2) habitat characteristics such as the dis-
tribution of steep inaccessible terrain and preferred forage;
and (3) locations of female rhinos with the potential to be sex-
ually receptive. We used the exponential power home range
model as an initial or null model of space use. This is a con-
venient null model because a bivariate normal distribution is
a particular case (i.e., shape parameter equals one). However,
the additional shape parameter allows for platykurtic shapes
up to and including a circular uniform distribution (i.e., shape
parameter <1; Horne and Garton, 2006). To incorporate the
influence of habitat associations related to topography and the
distribution of preferred forage, spatially explicit covariates
were derived based on percent slope and normalized differ-
ence vegetation index (NDVI; Kidwell, 1997). Percent slope (PS)
was included as a continuous variable while areas where NDVI
ranged from −0.38 to −0.16 were included as a categorical
variable describing grassland and open woodland vegetation

types (OPEN). Areas with high densities of potentially recep-
tive females (i.e., non-pregnant females without calves or with
calves ≥10 months of age) were characterized by calculating
a fixed kernel density estimate using female telemetry loca-
National Park, Zimbabwe.

tions (FD). To keep our analysis simple, we used the combined
locations (n = 203) of seven females to calculate the density
estimate recognizing a more exhaustive analysis might seek to
estimate space use for each individual separately. In addition
to these ecological influences, rhino space use was confined to
areas within the Park boundary by a high-tension game-proof
fence. Therefore, we had an additional categorical variable (PB)
that defined areas outside the Park boundary.

For the rhino synoptic model, we used Eq. (2) with k = 4 envi-
ronmental covariates. The initial exponential power model
was defined as

f0(x) = 2
c2�a2� (c)

exp

[
−
( ‖x − �‖

a

)2/c
]

(8)

where � is the gamma function, � is the center of the distribu-
tion, a > 0 is the scale parameter, c > 0 is the shape parameter,
and ||x − �|| denotes the distance between x and � (Horne and
Garton, 2006). Additional potential covariates for the synoptic
models were H1(x) = PB which took a value of 1 if outside the
Park boundary and 0 otherwise; H2(x) = PS with values of PS
standardized to range from 0 to 1; H3(x) = OPEN which took a
value of 1 if inside the open cover type and 0 otherwise; and
H4(x) = FD, a continuous variable standardized to range from 0
to 1 (Fig. 3).

Five a priori competing models were constructed to
describe space use by male rhinos. Four of these models
included various combinations of the environmental covari-
ates chosen to reflect hypotheses of space use including: (1)
space use is constrained by the park boundary but is unaf-
fected by percent slope, presence of the open covertype, or
the density of available mates (ExpPower + PB); (2) space use
is affected only by the park boundary and habitat selection
(ExpPower + PB + PS + OPEN); (3) space use is affected only by

the park boundary and the location of sexually receptive
female rhinos (ExpPower + PB + FD); (4) space use is affected
by the park boundary and the combined influence of habitat
and female density (ExpPower + PB + PS + OPEN + FD). The last
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Fig. 3 – Environmental covariates used to model space use by male white rhinos. Covariates included (a) percent slope, (b)
grassland/open woodland cover type, and (c) female white rhino density. Standardized values for each covariate ranged
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less likely to be in an area with the highest slope (32% slope)
compared to an area with the lowest slope (0% slope); ∼3 times
more likely to be in the open covertype as opposed to out of
this covertype; and ∼7 times more likely to be in an area char-

Table 1 – Summary of a priori candidate models used to
estimate the utilization distribution of three male white
rhinos

Rhino ID Modela K �AICc wi

M05 (n = 36) ExpPower + PB + FD + OPEN + PS 7 0 0.536
ExpPower + PB + FD 5 1.12 0.306
ExpPower + PB + OPEN + PS 6 2.60 0.147
ExpPower + PB 4 8.88 0.006
ExpPower 4 9.21 0.005

M09 (n = 44) ExpPower + PB + FD + OPEN + PS 7 0 0.929
ExpPower + PB + FD 5 5.14 0.071
ExpPower + PB + OPEN + PS 6 37.66 0.000
ExpPower + PB 4 56.28 0.000
ExpPower 4 74.58 0.000

M25 (n = 57) ExpPower + PB + FD + OPEN + PS 7 0 0.507
ExpPower + PB + OPEN + PS 6 0.06 0.492
ExpPower + PB + FD 5 14.83 0.000
ExpPower + PB 4 19.22 0.000
ExpPower 4 52.46 0.000

Table includes number of telemetry locations (n), number of esti-
mated model parameters (K), the difference between each model
and the model with the lowest AICc (�AICc), and the Akaike weight
(wi).
a ExpPower refers to the exponential power distribution used as the

null model; PB is a categorical covariate defining areas within the
Park boundary; FD is a continuous covariate related to the den-
rom 0 (light areas) to 1 (dark areas).

odel (ExpPower) we included was simply the exponential
ower model without any covariates.

Because all rhinos were restricted to areas within the
ark boundary, the selection parameter for models contain-

ng covariate PB was not estimated but set to −1 indicating no
robability of use outside the Park. All other model parameters

ncluding the location, scale, and shape parameters for the
xponential power as well as the selection parameters were
stimated by numerical maximization of the likelihood func-
ion, Eq. (3), using the Simplex algorithm (Press et al., 1986).

To select the best model from the candidate set, we used a
ariant of AIC corrected for small sample size (AICc; Johnson
nd Omland, 2004; Horne and Garton, 2006). While we identi-
ed the information theoretic (IT) best model by the lowest
ICc, we considered models with AICc scores within 3 of

he lowest AICc to be competing best models (Burnham and
nderson, 2002; Horne and Garton, 2006).

We estimated the utilization distribution for each rhino
sing parameter estimates from the IT best model. We
etermined the magnitude of the effect of the environmen-
al covariates on each rhino’s space use from estimates
f the selection parameters ˆ̌ from the IT best model. We
sed the odds ratio ı, Eq. (4), as a measure of the propor-
ional change in space use caused by the environmental
ovariates.

. Results

he best model for estimating the utilization distribution of
ll three male rhinos included combinations of habitat and
emale density covariates (Table 1). The full model contain-
ng all covariates had the lowest AICc for all three males. For

09, models without all three environmental covariates per-
ormed substantially poorer suggesting that space use by M09
as affected by the location of females, the open covertype,

nd percent slope. However, for males M05 and M25, there
as more model selection uncertainty. Models without female

ensity but including habitat covariates performed almost as
ell for males M05 and M25 and a model without the habitat

ovariates (open covertype and percent slope) but including
emale density performed well for male M05.
Using estimates of the selection parameters from the IT
best model for each individual, we were able to infer the
magnitude of the effect each environmental covariate had on
individual space use. Odds ratios suggested that space use of
all males was positively associated with female density and
the open covertype while negatively associated with increas-
ingly steep slopes (Table 2). For example, M05 was 0.01 times
sity of females in an area; OPEN is a categorical variable defining
areas with a grassland or open woodland covertype; and PS is a
continuous variable for percent slope.
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Table 2 – Parameter estimatesa for the synoptic model
used to describe space use by three male white rhinos

Rhino ID �x �y a c PSb OPENb FDb

M05 646309 7729348 2831 0.53 0.010 3.02 6.78
M09 638919 7722865 6184 0.63 0.468 2.36 41.38
M25 649985 7724209 4292 0.10 0.023 1.58 2.48

a Four parameters were estimated for exponential power function
used as the null model including the center of the distribution
in the x and y dimensions (�x, �y), the shape parameter (a), and
the scale parameter (c). Selection parameters were estimated for
the three environmental covariates including percent slope (PS),
grassland or open woodland covertype (OPEN), and female den-
sity (FD).

b Instead of reporting the selection parameter estimates from the
synoptic model (i.e., the ˇ in Eq. (2) in the text), we report the

odds ratios representing the proportional change in the utilization
distribution attributable to each variable. In Eq. (5) in the text,
Hj(a) = 1 and Hj(b) = 0.

acterized as having the highest female density compared to
the lowest density.

The previous results were for each covariate when the rest
were held constant. Using Eq. (4) we can also compare two sce-
narios containing the full suite of environmental covariates.
For example, how much more likely is M05 to be in an area
with 2% slope, 0.5 relative female density, and in the open
covertype versus 10% slope, 0.7 relative female density, and
not in the open covertype? Entering −0.99, 2.02, and 5.78 for
the estimated betas of PS, OPEN, and FD as well as 0.06 and 0.31
for the standardized slope values of 2% and 10%, respectively,
gives
ı = [1 + (−0.99)(0.06)][1 + 2.02(1)][1 + 5.78(0.5)]
[1 + (−0.99)(0.31)][1 + 2.02(0)][1 + 5.78(0.7)]

= 3.16

where the first term in brackets is for percent slope, the second
is for the open covertype and the third is for female density.

Fig. 4 – Estimated utilization distribution for three male white rh
based on a synoptic model of space use. Contour lines follow are
95% home range for each individual.
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Thus, M05 is approximately three times more likely to be in
the first area as opposed to the second.

Resulting estimates of the utilization distributions based
on the IT best model for each animal revealed space use
patterns that were highly irregular and multimodal (Fig. 4)
reflecting the patchy distribution of influential environmen-
tal covariates. Generally, areas characterized by the open
covertype with high female density and low slope had high
probability of use whereas areas without these characteristics
were used less. Traditionally, such complex distributions could
only be described using non-parametric models (e.g., ker-
nel smoothing). However, our synoptic model demonstrates
that by incorporating additional spatial covariates, paramet-
ric models are able to capture the complexity of patterns of
space use that have escaped them in the past.

5. Discussion

Animal space use is inherently a multivariate process and we
believe an understanding of this process is best achieved by
explicitly modeling the utilization distribution as a function
of several interacting ecological processes and environmental
pressures. The synoptic model allows researchers to estimate
an individual animal’s utilization distribution as a function of
multiple, spatially explicit, environmental covariates. When
coupled with an analysis of the odds ratios using the esti-
mated parameters, the model can also be used to infer the
strength of the effect various environmental factors have on
space use. As a secondary benefit, our synoptic model offers
an avenue by which estimates of animal home ranges are
likely to be improved by including additional spatially explicit

information other than location coordinates.

By using the synoptic model, researchers can evaluate the
strength of evidence for different hypotheses about the eco-
logical processes affecting animal space use. Thus, the best

inos (M05, M09, M25) in Matobo National Park, Zimbabwe,
as of equal probability with the outer extent defining the
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odel can be used not only for describing the size, shape,
nd location of the home range, but also probing why the
ome range takes that form. In our example, the best syn-
ptic model indicated that multiple environmental factors

nfluenced space use by male rhinos. There was a strong neg-
tive relationship between probability of use and the steep,
ocky slopes. This relationship is likely due to morphological
onstraints of rhinos that render them incapable of moving
eadily through steep, loose terrain or because of the ener-
etic demands of climbing. Additionally, the synoptic model
mplies that male rhinos were typically found in areas with
oraging resources (i.e., open cover type) and high densities of
otentially receptive females.

Despite these general trends in rhino space use, it should be
oted that there was significant model selection uncertainty

or two of the males. For M05, the limited number of loca-
ions (n = 36) and likely correlations among covariates resulted
n ambiguities as to whether habitat selection or the loca-
ion of females in isolation were the main drivers of space
se or whether all of these factors collectively contributed to
etermining the space use. Similarly, there was not clear evi-
ence that including female density provided a better model of
pace use for M25 than a model containing only habitat covari-
tes. In regards to these ambiguities, we remind readers first
nd foremost that these results were only used as an exam-
le application of the synoptic model. However, we expect
ur results are not atypical of those that will be encountered
hen the synoptic model is used for future studies. Therefore,
e emphasize that results from the synoptic model should
e incorporated into a population-level analysis as previously
iscussed in the section on interpreting the model structure
nd parameter estimates. We also note that many of these
mbiguities can only be alleviated by increasing sample size
nd thus, providing more power to specify the relationships
nd then by following up on inferences obtained from obser-
ational studies with manipulative experiments.

Our rhino example demonstrated another practical benefit
f using environmental covariates to model space use. Fre-
uently, animal home ranges include areas that, because of
ertain characteristics, are inaccessible or completely avoided
e.g., a lake within the home range of a terrestrial animal,
r the terrestrial environment for an aquatic species). In
ur example, the rhinos at Matobo Park were confined to
reas within the Park by an impassible fence. Similar to
atthiopoulos (2003a), this prior knowledge can be incorpo-

ated into the model by defining inaccessible areas and setting
he selection parameter equal to −1. However, if these rela-
ionships are not known the synoptic model offers a way to
stimate them contemporarily through the likelihood func-
ion.

.1. Home range estimation and resource selection
sing a synoptic model

ith few exceptions (e.g., Matthiopoulos, 2003a,b), most
mpirical models for estimating animal home ranges are

ased solely on location coordinates and do not allow
esearchers to incorporate additional ecological factors that
ffect occurrence into the model. Likewise, habitat selection
nalyses generally fail to incorporate spatial processes such
4 ( 2 0 0 8 ) 338–348 345

as home range behavior (Thomas and Taylor, 2006). However,
researchers have begun to develop models that combine home
range behavior and habitat selection into one analysis. For
example, Matthiopoulos (2003a) recognized that home range
estimation could be improved by incorporating the spatial dis-
tribution of environmental factors (e.g., location of a nest or
the distribution of food) into kernel density estimates, pro-
vided researchers have a priori knowledge of their effects. Our
model differs from the approach of Matthiopoulos (2003a,b) in
that no a priori estimates of habitat selection are required.
Instead, these relationships are estimated simultaneously
with the utilization distribution by combining location data
with readily available data on spatially explicit environmental
covariates.

Simultaneously coupling home range models with
resource selection into a single model has additional benefits
beyond improving estimates of the utilization distribution.
The purpose of the initial/null model is to represent space use
in the absence of any effect from environmental covariates.
In essence, the null model is defining the “availability” of
resources upon which subsequent selection behavior oper-
ates. This is a critical step that enables researchers to remove
the effect of primary behavioral processes (e.g., central
tendency around the home range center) from analyses of
resource selection. Recognizing this deficiency in resource
selection analyses, important contributions were made by
Matthiopoulos (2003b) who described an approach to examine
habitat preference that accounted for accessibility of habitats
and Rhodes et al. (2005) who described a model for incorpo-
rating home range behavior into habitat selection analyses.
Our approach differs from that of Matthiopoulos (2003b) and
Rhodes et al. (2005) in that instead of modeling the movement
process with the goal of inferring habitat selection, we con-
struct a phenomenological model of the resulting probability
distribution of space use. The model is constructed in such a
way that the effects of home range behavior, habitat selection
and interrelations with other animals can be taken into
account while estimated parameters within the model can be
used to infer the strength of the effect these factors have on
an animal’s space use.

5.2. Assumptions of the synoptic model

Finally, we discuss several structural and statistical assump-
tions of the synoptic model and subsequent parameter
estimation as they relate to the biological realities of animal
movements and data collection. First, we have assumed that
the utilization distribution of the animal under investigation
is fixed over the analysis period. This assumption has tradi-
tionally been accommodated by setting a temporal boundary
for home range estimation or resource selection (e.g., sea-
sonal estimates) and we believe this approach is appropriate
for the synoptic model as well. However, a better approach
would be to apply the synoptic model in the context of a
mixed effects model to determine temporal processes associ-
ated with changes in animal space use and insure that home

range size and patterns of habitat selection were not changing
over the analysis period (Borger et al., 2006).

We assumed that our sample of animal locations were
independent samples from the utilization distribution. How-
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ever, it is well known that taking locations over relatively short
time intervals introduces serial autocorrelation into the data
(Swihart and Slade, 1985). Because our synoptic model is ulti-
mately an estimate of the utilization distribution, we suggest
that general recommendations for collecting telemetry data
for home range estimation apply. In particular, we suggest
researchers use a systematic sampling scheme to collect loca-
tions during the time period from which inferences will be
drawn (Garton et al., 2001; Kernohan et al., 2001; Fieberg, 2007).

Last, we suggested that by using the synoptic model,
researchers can shorten the distance between general statisti-
cal models and mechanistic models of animal space use. To do
this using the model we presented, we have assumed two con-
nections between the synoptic model and animal movements.
First, we assumed that the null model is a good approximation
of the space use of an animal moving without any influence
from environmental covariates and secondly, we assumed
that there was proportional change in the utilization distri-
bution caused by each environmental covariate.

We used the exponential power model as a null model
because a circular normal distribution characteristic of an ani-
mal that biases random movements towards a central place
is a particular case (i.e., shape parameter equals 1) but also
allows for a more uniform distribution of space use (i.e., shape
parameter <1) that may be characteristic of territorial animals
in homogeneous environments (Grant, 1968; Covich, 1976).
While a direct connection can be made between a centrally
biased random walk and a circular normal distribution (Dunn
and Gipson, 1977; Okubo, 1980), currently there are no similar
connections between movement processes and the exponen-
tial power model when the shape parameter does not equal
1. Future research should investigate these connections and
seek to determine appropriate parametric distributions that
can be used as the null model based on known movement
behaviors or ecological hypotheses.

We chose to model the effect of environmental covari-
ates as a proportional change in the utilization distribution
because of agreement with other studies of resource selection.
However, we are unaware of any studies that have provided a
link between this assumption and actual hypothesized animal
movements. We note that from a limited set of simulations of a
centrally biased random walk within an area composed of cat-
egorical “habitat” types, there was support for a proportional
change in the utilization distribution if the animal is more
likely to stay inside the preferred habitat type than if there
was no preference (Horne, 2005). Again, to provide a better link
with the biological processes governing animal space use we
suggest that future research should investigate the appropri-
ateness of assuming a proportional change in the utilization
distribution from real and simulated animal movement pro-
cesses.
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Appendix A

Association between synoptic model weighting parameters
and Manly’s selection ratios.

We start with the synoptic model of animal space use,

s(x) =
f0(x)

k∏
i=1

(1 + ˇiHi(x))

∫
x

[
f0(x)

k∏
i=1

(1 + ˇiHi(x))

] (A.1)

where, s(x) = probability density of use at spatial location x;
Hi(x) = i = 1, . . ., k spatially explicit environmental covariates; if
covariates are categorical (e.g., habitat types), Hi(x) is an indica-
tor function that equals 1 if x is in category i and 0 otherwise.
f0(x) = null probability density of space use (i.e., no effect of
covariate(s) Hi(x) on probability of use) ˇi = weighting parame-
ter.

If His are non-overlapping and categorical (i.e., habitat
types), Eq. (A.1) becomes,

s(x) =
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)

∫
x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)] (A.2)

Next, consider selection of habitat type j in H. In the fol-
lowing, we will show that when the null model of space use
is uniform, Manly’s selection ratio (Manly et al., 2002:77) is a
consistent estimator of

(1 + ˇj)∫
x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)] (A.3)

Without changing the result of Eq. (A.3), we multiply Eq.
(A.3) by f0(x)/f0(x)

f0(x)(1 + ˇj)/
∫

x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)]

f0(x)
(A.4)

The numerator in Eq. (A.4) is the probability density of use at
a position x in habitat j under the model that incorporates the
effect of selection. The denominator in Eq. (4) is the probability
density of use at position x in habitat j without selection (i.e.,
null model of space use).

If f0(x) is a uniform distribution (i.e., equal probability of use
within a boundary), then without changing the result of Eq.
(A.4) we can calculate the probability of using habitat j under
the model with selection divided by the probability of using
habitat j without selection by multiplying Eq. (A.4) by Aj/Aj

where, Aj is the area of habitat j within the boundary of f0(x).

f0(x)(1 + ˇj)/
∫

x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)]

Aj
f0(x)Aj
(A.5)

Because the numerator of Eq. (A.5) is the probability of
using habitat j under the selection model, it is equivalent to the
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xpected proportion of locations in this habitat type E(Oj). Sim-
larly, because the denominator in Eq. (A.5) equals probability
f using habitat j without selection, it equals the proportion of
abitat type j within the boundary of f0(x), symbolized as �j.
hus, Eq. (A.5) equals E(Oj)/�j and because Eq. (A.3) is equiva-

ent to Eq. (A.5),

(1 + ˇj)∫
x

[
f0(x)

(
1 +

∑k

i=1ˇiHi(x)
)] = E(Oj)

�j
.

A consistent estimate of E(Oj)/�j is Manley’s selection ratio

j/�j, where oj is the observed proportion of locations in each
abitat type (Manly et al., 2002:77).
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