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ANALYZING ANIMAL MOVEMENTS USING BROWNIAN BRIDGES
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Abstract. By studying animal movements, researchers can gain insight into many of the
ecological characteristics and processes important for understanding population-level
dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the
expected movement path of an animal, using discrete location data obtained at relatively short
time intervals. The BBMM is based on the properties of a conditional random walk between
successive pairs of locations, dependent on the time between locations, the distance between
locations, and the Brownian motion variance that is related to the animal’s mobility. We
describe two critical developments that enable widespread use of the BBMM, including a
derivation of the model when location data are measured with error and a maximum
likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted
to location data, an estimate of the animal’s probability of occurrence can be generated for an
area during the time of observation. To illustrate potential applications, we provide three
examples: estimating animal home ranges, estimating animal migration routes, and evaluating
the influence of fine-scale resource selection on animal movement patterns.

Key words: Brownian bridge; home range; migration; random walk; resource selection; road crossings;
stochastic process; utilization distribution.

INTRODUCTION

The causes and consequences of animal movements

are of great interest to ecologists. In particular, by

studying movements of individual animals, researchers

have gained insight into population distributions

(Turchin 1991), important resources (Birchfield and

Deters 2005), dispersal strategies (Small and Rusch

1989), social interactions (Minta 1992), and general

patterns of space use (Kenward et al. 2001). Critical to

understanding these ecological characteristics and their

subsequent effects on population dynamics are appro-

priate methods for quantifying and analyzing movement

patterns of individual animals.

An animal’s movements are defined by a continuous

trajectory or path through space and time. Direct

observation of this path may be the most powerful

method for quantifying movement (Turchin 1998), but

many organisms are not amenable to continuous

observation. For these species, several alternative meth-

ods are often employed to collect locations at discrete

intervals along the trajectory. Probably the most widely

used of these methods is biotelemetry, a generic term

incorporating all methods for remotely determining the

location of an animal (Priede 1992). In particular, global

positioning system (GPS) telemetry is increasingly being

used to study animal movements because it provides

researchers the opportunity to almost continuously

follow the movements of individuals for extended

periods of time and over great distances. Using these

types of data, we describe a new model for estimating

animal movements based on Brownian bridges.

A Brownian bridge is a continuous-time stochastic

model of movement in which the probability of being in

an area is conditioned on starting and ending locations,

the elapsed time between those points, and the mobility

or speed of movement. Use of Brownian bridges to

depict animal movements was first proposed by Bullard

(1999), who described their application in estimating

animal home ranges. Recently, Calenge (2006) intro-

duced software for performing the calculations de-

scribed by Bullard. We further develop and extend

Bullard’s ideas for the general purpose of estimating the

movement path of individual animals. In particular, we

derive the BBMM when observed locations are mea-

sured with error and we develop a maximum likelihood

approach for empirically estimating one of the key

parameters of the BBMM, i.e., the variance term related

to the animal’s mobility. To demonstrate the breadth

and utility of this model, we applied the BBMM to three

common uses of movement data: (1) estimating animal

home ranges, (2) determining migration routes, and (3)

analyzing fine-scale resource selection.

The Brownian bridge movement model

An animal’s movements define a path (i.e., trajectory),

through an area, during a specified period of time from t

¼ 0 to Ttotal. We assume that continuous observation of

the animal is impossible, but n discrete locations along

the trajectory are available. Our interest is in modeling an

animal’s utilization distribution (i.e., the relative fre-

quency of use of a two-dimensional area A � R2) during
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the period of observation [0, Ttotal]. Absent any a priori

knowledge of movement patterns, it is natural to model

such movement as a random walk or its continuous

counterpart, Brownian motion (Turchin 1998). An

animal’s frequency of use in an area is estimated by

treating each of the n locations along the trajectory as

known or approximately known, and using the proper-

ties of a conditional random walk to model the expected

movement path between each successive pair of loca-

tions. When Brownian motion is extended for this

situation (i.e., conditioned on the beginning and ending

locations of each pair), the corresponding stochastic

process is called a Brownian bridge (Ross 1983).

Probability conditioned on starting and ending points

Let Za;b;T
t denote the position of an animal at time t 2

[0, T ] undertaking a random walk from positions a to b

with known values Za;b;T
0 ¼ a and Za;b;T

T ¼ b in R2. This

process has a normal distribution Za;b;T
t ; N(l(t), r2(t)I )

at time t 2 [0, T ], where

lðtÞ ¼ aþ t

T
ðb� aÞ r2ðtÞ ¼ tðT � tÞ

T
r2

m:

Here, I is the 2 3 2 identity matrix and r2
m is the

diffusion coefficient related to the mobility of the

animal. Thus, the expected position of an animal that

moves randomly between a and b at any point in time

from t ¼ 0 to t ¼ T can be estimated by a normal

distribution. The mean of this normal distribution

moves from a to b proportional to the time between a

and b [i.e., l(t)¼ aþ (b� a)t/T ], and the variance equals

0 when t ¼ 0, increases up to the midpoint in time

between a and b, and then decreases back down to 0

when t ¼ T [i.e., r2(t) ¼ r2
mt(T � t)/T ]. For notational

convenience, we write the bivariate N(l, r2I ) density as

uðz; l;r2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp

�ðz� lÞ2

2r2

" #

where z is any location in R2. Using this notation, the

probability density of a Brownian bridge with starting

location a and ending location b, at any point in time

from t¼ 0 to t ¼ T, is

p̂a;b;T
t ða; zÞ ¼ u

�
z; lðtÞ;r2ðtÞ

�
: ð1Þ

In tracking animal movements, biotelemetry error is a

prominent feature of most techniques for obtaining

locations (Millspaugh and Marzluff 2001). Therefore,

we next consider a Brownian bridge that incorporates

uncertainty in the starting and ending locations. To take

this into account, we follow Bullard (1999) by letting the

starting and ending locations be random, with proba-

bility density functions fa(x) and fb(y), respectively,

where x and y are position variables (two-dimensional

vectors) in R2. We use ZT
t to denote a Brownian bridge

with starting and ending locations that are random.

Then, the probability of finding the animal in region A

at time t 2 [0, T ] is

PðZT
t 2 AÞ ¼

ZZ
PðZx;y;T

t 2 AÞfaðxÞfbðyÞdxdy

¼
ZZ Z

A

p̂x;y;T
t ðx; zÞdz

� �
faðxÞfbðyÞdx dy: ð2Þ

Expected occupation time in a region

To this point, we have described a Brownian bridge

model that estimates the probability of the animal being

in an area A at a specific time t in the interval [0, T ].

However, our main objective of study involves the

frequency of use of an area over the entire time of

observation. In other words, as the animal moves from

its starting position at time 0 to its ending position at

time T, what is the fraction of time it is expected to

spend in region A? To answer this, we first define the

indicator function 1A(x) that takes a value of 1 if x is in

the region A and 0 otherwise. The random quantityZ T

0

1AðZT
t Þdt

known as the occupation time for the region A, gives the

amount of time during the observation period that the

animal spends in A. Dividing by T and taking the

expected value (E ), we get the expected fraction of time

in A. As a function of the region A, this yields a

probability measure. Our objective is to find the

corresponding probability density function h(z) such

that

E
1

T

Z T

0

1AðZT
t Þdt

� �
¼
Z

A

hðzÞdz:

Indeed,

E
1

T

Z T

0

1AðZT
t Þdt

� �

¼ 1

T

Z T

0

PðZT
t 2 AÞdt

¼ 1

T

Z T

0

ZZZ
A

p̂x;y;T
t ðx; zÞfaðxÞfbðyÞdzdxdy

� �
dt

¼
Z

A

1

T

Z T

0

ZZ
p̂x;y;T

t ðx; zÞfaðxÞfbðyÞdx dydt

� �
dz: ð3Þ

Thus, the desired density function is given by

hðzÞ ¼ 1

T

Z T

0

ZZ
p̂x;y;T

t ðx; zÞfaðxÞfbðyÞdxdydt: ð4Þ

This equation depends on the density functions fa and fb
of the initial and final positions of the Brownian bridge,

as well as the variance r2
m of the underlying Brownian

motion. When the distribution of location errors, fa and

fb, corresponds to circular normal distributions N(a, d2
aI)

and N(b, d2
bI), respectively, Eq. 4 simplifies to:
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hðzÞ ¼ 1

T

Z T

0

u
�

z; lðtÞ;r2ðtÞ
�

dt ð5Þ

where r2(t)¼Ta(1� a)r2
m þ (1� a)2 d2

a þ a2d2
b, and a¼

t/T. To avoid confusion of variance terms, note that the

variance of location error is symbolized by d2. A

derivation of Eq. 5 from Eq. 4 is provided in the

Appendix. While the expression in Eq. 5 cannot be

integrated, it can be approximated by discretizing time

into arbitrarily small intervals of dt, which is the

approach that we used. Using Eq. 5, an example of

Brownian bridge probability density constructed be-

tween two locations that were 280 m and 20 min apart is

shown in Fig. 1. For this example, the Brownian motion

variance r2
m ¼ 642 m2 and the standard deviation of

telemetry error da ¼ db ¼ 28.85 m.

Model for multiple (n . 2) locations

We now describe the BBMM by considering the

situation in which an animal’s movements are monitored

over an extended period of time, resulting in a series of

space–time observations (Z0, t0), (Z1, t1), (Z, t2), . . . ,

(Zn, tn) collected during Ttotal¼ tn – t0, where Zi is the ith

observed location and ti is the time of that observation.

We also assume normally distributed location errors;

thus, the actual position of the animal at time t is

modeled as a normal random variable Zi ; N(zi, d2
i I ).

Given the n observations during the time interval [0,

Ttotal], and accounting for location error as described,

the density function for the fraction of time at z during

[0, Ttotal] is:

hðzÞ ¼ 1

Ttotal

Xn�1

i¼0

Z Ti

0

u
�

z; liðtÞ;r2
i ðtÞ
�

dt

� �
ð6Þ

where Ti¼ tiþ1� ti, li(t)¼ ziþ ai(ziþ1� zi), r2
i (t)¼Tai(1

� ai)r2
m þ (1� ai)

2d2
i þ aid

2
iþ1, and ai¼ (t� ti)(Ti)

�1. To

understand how the BBMM of Eq. 6 follows from the

form of the density corresponding to two successive

observations in Eq. 5, observe that the Brownian bridge

probability density connecting each pair of locations is

an estimate of the relative time spent in an area during

the time interval between those locations. Thus, the part

of the trajectory during [Ti, Tiþ1] should count as a

fraction (Tiþ1 � Ti)/Ttotal of the total. Weighting each

integral from Eq. 5 by the appropriate fraction, and then

adding, gives Eq. 6.

Parameter estimation

The BBMM is dependent on time-specific location

data, the distribution of location errors and the

Brownian motion variance parameter r2
m. For the

model we described, the location error (e.g., from

biotelemetry) is assumed to be normally distributed,

with mean centered on the estimated location and

variance either known or estimated via independent

experiment. However, r2
m, which is related to the

animal’s mobility, is a feature of the particular animal

under observation. An empirical estimate of r2
m can be

obtained from the location data used to construct the

BBMM by assuming that the path connecting any two

observed locations is a Brownian bridge. To estimate

r2
m, assume that n is even and consider the independent

Brownian bridges on the nonoverlapping time intervals

[t0, t2], [t2, t4], [t4, t6], . . . , [tn�2, tn], while regarding the

in-between observation times t1, t3, t5, . . . , tn�1 as

independent observations from these Brownian bridges

(Fig. 2). Under the assumptions of the Brownian bridge

model, this yields a sample of n/2 independent odd

observations, Z1, Z3, . . . , Zn�1, that are normally

distributed, Zi ; N(li(ti), r2
i (ti)I ), where li(ti) ¼ Zi�1 þ

ai(Ziþ1 � Zi�1); r2
i (t) ¼ Tiai(1 � ai)r2

m þ (1 � ai)
2d2

i�1 þ
aid

2
iþ1; ai¼ (ti� ti�1)/Ti; and Ti¼ tiþ1� ti�1. This allows

us to construct the following likelihood function for odd

FIG. 1. Probability density for the fraction of time spent in
different regions, constructed using the Brownian bridge
movement model. Locations were 280 m and 20 min apart.
The Brownianmotion variancer2

m was 642 m2, and the standard
deviation of normally distributed location error was 28.85 m.
The two peaks in density correspond to the observed locations.

FIG. 2. Example of three Brownian bridges connecting even
observations at time intervals [t0, t2], [t2, t4], and [t4, t6]. The in-
between observations at times t1, t3, and t5 are independent
observations from these Brownian bridges and can be used to
estimate the Brownian motion variance parameter.
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locations:

L ¼
Yn�1

i¼1

1

2pr2
i ðtiÞ

exp
�½Zi � liðtiÞ�½Zi � liðtiÞ�>

2r2
i ðtiÞ

( )
: ð7Þ

Here ` denotes transpose. If the standard deviation of
telemetry error (d) for each location is assumed to be

known, then the Brownian motion variance r2
m is the

single unknown parameter and its maximum likelihood
estimate can be obtained by numerically optimizing the

likelihood function over values of r2
m. In effect, we are

using the observed locations to find the value of r2
m that

best predicts the odd locations when a Brownian bridge
is assumed between the even locations. For our
examples, we used the Golden Section Search routine

(Press et al. 1986) to accomplish this optimization.

APPLICATIONS AND EMPIRICAL EXAMPLES

Home range estimation

Since Burt (1943:351) formally defined home range as
‘‘. . .that area traversed by the individual in its normal

activities of food gathering, mating, and caring for
young,’’ home range estimation has been a cornerstone

of ecological inquiries. Building on Burt’s original
concept, several authors found home range estimation
to be more tractable if an animal’s space use is described

as the probability that the animal occurred in an area
during a specified period of time (i.e., utilization

distribution; Jennrich and Turner 1969, Worton 1995).
Because the BBMM estimates the probability that the

animal occurred in an area over the analysis period,
there is a direct application for estimating animal home
ranges (Bullard 1999, Powell 2000).

As an example, we estimated the home range of a
male black bear (Ursus americanus) in northern Idaho,

USA, using the BBMM (see Supplement). Location data
were collected in the summer of 2005 using Lotek 3300L

GPS collars (Lotek, New Market, Ontario, Canada)

programmed to store a location every 20 min. We

determined mean location error by placing 18 collars in

48 test sites across the study area that represented a

range of canopy cover and terrain obstruction. Collars

were left at each test site for 24 hours, resulting in 72

attempted locations per test site. For each test site we

calculated the standard deviation from the attempted

locations and calculated a mean location error (d) by

averaging the standard deviations across the 48 test sites.

The Brownian motion variance (r2
m) was estimated

using the method of maximum likelihood described in

the previous section. Using these parameters, an

estimate of the utilization distribution was determined

using the BBMM (i.e., Eq. 6). For comparison, we also

estimated the home range using a fixed-kernel density

with the smoothing parameter (h ¼ 76.95) chosen using

likelihood cross-validation (Horne and Garton 2006).

We used 1470 satellite telemetry locations, with most

locations (85%) occurring at 20-min intervals. However,

due to satellite acquisition failure, some (11%) were

collected at 40-min intervals and the remainder (4%)

were taken at intervals of .40 min, with none exceeding

120 min. Mean location error was d̂¼ 28.85 and the

estimated Brownian motion variance was r̂2
m ¼ 642.44.

Estimates of the utilization distribution were similar for

the BBMM and the fixed-kernel method (Fig. 3). Both

models suggested a complex distribution of space use,

with multiple centers of activity as well as areas within

the home range that receive little or no use. Indeed, there

was 77% overlap in the areas represented by the 99%
contours of the BBMM and the fixed-kernel estimate.

Although our example suggests that similar estimates

of the utilization distribution may be obtained using the

BBMM and kernel density estimates, it is important to

realize some distinct differences in assumptions, both

implicit and explicit, between the two models that may

ultimately result in dissimilar estimates. From our black

bear example, it is evident that areas of frequent use

FIG. 3. Estimated home range (i.e., utilization distribution) of male black bear in northern Idaho, USA. The range in (a) is
calculated using the Brownian bridge movement model with a variance parameter¼ 642.44. The range in (b) is calculated using a
fixed kernel density estimate with a smoothing parameter¼ 76.95. In both panels, the outer contour represents the 99% contour.
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were more likely to be ‘‘connected’’ via pathways using

the BBMM as opposed to the kernel estimate. This is

because the BBMM, having more of a mechanistic basis,

estimates the utilization distribution by modeling the

animal’s expected movement path throughout an area

over the period of observation. Uncertainty in the actual

movement path is directly incorporated via the two

ecologically based model parameters: the animal’s

mobility (i.e., r2
m) and measurable location error.

In contrast, kernel-smoothing techniques do not have

a similar mechanistic basis. Instead, location data are

assumed to represent a statistical sample from some

underlying probability distribution, not the animal’s

movement path. Location data are smoothed to an

‘‘optimal’’ level in order to recover, as closely as

possible, the true underlying distribution. The value of

the smoothing parameter is usually chosen based on

some type of statistical procedure designed to minimize

the difference between the kernel estimate and the true

distribution (Horne and Garton 2006), and kernel

estimates are notoriously sensitive to these values.

Although the smoothing employed by kernel estimates

can be viewed as an indirect method for incorporating

process and measurement error into estimates of the

probability of occurrence, the connection is not as direct

as the BBMM and there is no connection to ecological

processes (Powell 2000).

Because of the differences in fundamental assump-

tions, the BBMM deals with the issues of serial

correlation and unequal time intervals between locations

in a much more straightforward manner. Unlike other

probabilistic home range models, including kernel

estimates, that assume temporal independence (Worton

1987), the BBMM assumes that locations are not

independent and explicitly incorporates the time be-

tween locations into the model. In contrast, suggested

methods for adapting kernel methods to serially

correlated data with irregular sampling intervals require

an additional user-defined parameter, beyond the spatial

smoothing parameter, to control the amount of tempo-

ral weighting (Katajisto and Moilanen 2006). Although

there are data-based techniques for choosing these

parameters, even the proponents of these methods

acknowledge that the choice of these parameters is

‘‘somewhat subjective’’ (Katajisto and Moilanen

2006:407). Using the BBMM to model home ranges

removes this subjectivity by estimating the probability of

occurrence based on observed animal movements and

measurable location error.

Estimating migration routes

Most animals tend to remain in an area (i.e., home

range) throughout their lives. However, for some,

seasonal migrations to and from more permanent areas

of use are a critical life history strategy necessary for

population persistence (Baker 1978). For these species,

identifying migration routes is an important component

of ecological research and management and recent

developments in satellite telemetry have enabled re-

searchers to collect the location data needed to monitor

animals during migration. When coupled with these

data, the BBMM is well suited for describing migration

routes probabilistically.

We used the BBMM to estimate the fall migration

route of 11 female caribou (Rangifer tarandus) from the

Nelchina Herd in south-central Alaska, USA, with data

collected as part of an investigation of the influences of

wildland fires on caribou habitat selection (Joly et al.

2003). Adult female caribou were fitted with telemetry

collars that incorporated a GPS receiver and were

programmed to calculate and store locations at 7-hour

intervals. For this example, we used location data

collected during 9–31 October 2000. Because we did

not have an independent estimate of location error for

these data, we used the same estimate that we used for

the black bear data (i.e., d ¼ 28.85 m). We estimated a

unique Brownian motion variance for each caribou

individual using the method of maximum likelihood

described previously. We estimated each individual’s

probability of occurrence along the migration route

using the BBMM. As an estimate of the population-level

migration route, we calculated a mean probability of

occurrence across the 11 individuals that were moni-

tored.

The number of telemetry locations per individual

ranged from 55 to 79, with most (92%) being collected at

7-hour intervals. However, due to satellite acquisition

failure, some (6%) were collected at 14-hour intervals

and the remainder (2%) were taken at intervals .14

hours, with none exceeding 31 hours. Estimates of the

Brownian motion variance for individual caribou ranged

from 13 008 to 29 256 m2, with a mean of 22 804 m2.

Mean probability of occurrence across the 11 individuals

suggested high selectivity in choosing a migration route

to minimize travel across the steep terrain characterizing

the Alaska Range (Fig. 4).

Although several probabilistic models are available

for describing space use of animals occupying a home

range (Kernohan et al. 2001), there are no similar

techniques to describe space use of animals during

migration or dispersal. The BBMM is well suited for

describing these processes by modeling the uncertainty

in the movement path between observed locations along

the migration route. When coupled with location data

collected at relatively short time intervals, the BBMM

enables researchers to effectively identify important

characteristics of migration routes, such as stopover

sites (Mehlman et al. 2005), movement corridors (Berger

2004), and migratory landscape and habitat features

(Skagen et al. 2005).

Resource selection

The previous two examples demonstrated the appli-

cability of the BBMM for describing animal movements

and space use. In this section, we demonstrate how

estimates of the movement path can be used to analyze
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fine-scale patterns of resource selection. In particular, we
use the BBMM to investigate environmental attributes

that make certain sections of highways likely places for

animal crossings (see Plate 1).

Because heavily used roads have been shown to

increase habitat fragmentation, many highway projects

include road structures (e.g., overpasses and underpass-
es) designed to increase road permeability (Clevenger

and Waltho 2000). An essential component of deter-

mining where to place these structures is information on

where animals currently cross and what environmental

characteristics are associated with likely crossing points.
Here we show how the BBMM can be used to identify

places along the highway where animals frequently cross

by estimating the probability of occurrence along the

road. These probabilities can then be regressed against

environmental covariates to determine characteristics
associated with likely crossing points.

For this example, we used 1046 satellite locations

collected on a female black bear whose home range

spanned Highway 95 in northern Idaho. Location data

were collected, and BBMM parameters were estimated,

using the same protocol as described in the previous
section on home range analysis. To identify sections of

the highway frequently used for crossing, we first

selected all pairs of consecutive locations that occurred

on opposite sides of the highway. We then defined areas

along the highway as 503 50 m grid cells and estimated

the relative frequency of use of each grid cell using the

BBMM.

To investigate characteristics associated with likely

crossing points, we regressed the probability at each grid

cell on three spatially explicit environmental variables.

The first variable depicted the amount of human

disturbance (or development) near each grid cell

(HumDev), the second described the amount of canopy

cover (CanCov), and the third measured the distance to

water (DistWat). We used a linear model (as per

Marzluff et al. 2004) to determine the relative influence

of each environmental variable on the probability of

crossing. The importance of each variable j in explaining

the variation of probabilities was determined using

standardized partial regression coefficients (Zar 1984,

Marzluff et al. 2004).

Estimates of the probability of occurrence in each grid

cell suggested that certain sections of the highway were

substantially more likely to be used for crossing than

others (Fig. 5). The least squares fit of our linear model

indicated that a significant amount of the variation (R2¼
0.57) in the probability of crossing the highway was

explained by the amount of developed area, distance to

water, and mean canopy cover. As indicated by the

standardized regression coefficients, the proportion of

human development was the most significant variable in

determining likely crossing points (Table 1).

FIG. 4. Estimated fall migration route of 11 caribou in south-central Alaska, USA, in relation to elevation. Probability of
occurrence was estimated using the Brownian bridge movement model cumulative probability contour.
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By using the BBMM to estimate likely crossing points

and regressing these probabilities against environmental

characteristics, we were able to predict the probability of

a female black bear crossing along Highway 95 as a

function of environmental variables. Our approach

generally followed the method for analyzing resource

selection developed by Marzluff et al. (2004). However,

instead of using a kernel density to estimate the

probability of use, we used the BBMM. This allowed

for investigation of relatively fine-scale movement and

selection patterns and allowed us to use only the paired

locations of a known highway crossing.

DISCUSSION

Although biotelemetry has become increasingly prom-

inent in ecological studies (Kenward 2001), methods for

quantifying animal trajectories based on discrete loca-

tions, until recently, had not progressed much beyond

connecting the locations with a straight line (Pace 2001).

However, recognizing the need for more sophisticated

models to analyze these data, there has been a surge of

recent work to develop state–space models for analyzing

and predicting animal movements (e.g., Jonsen et al.

2003, 2005, Morales et al. 2004, Flemming et al. 2006).

We view the BBMM as complementary to these process-

based models. One key difference in our approach is a

greater focus on estimation, as opposed to prediction.

The BBMM is useful for estimating space use of

individual animals by melding location data collected

on each individual with conditional random walk

models.

Technological advances (e.g., satellite telemetry) are

fostering a trend toward collecting location data at

increasingly smaller time intervals on an ever-growing

number of species; the BBMM offers a new approach to

describe and analyze animal movements using these

types of data. By treating movements between observed

locations probabilistically, researchers are able to

quantify the uncertainty in estimating the actual path

caused by key factors such as the distance between

observed locations, the time interval between locations,

the measurement error in observed locations, and the

mobility of the animal under investigation.

The BBMM has several important applications to the

study of animal populations. First, because the BBMM

was explicitly created to analyze location data that are

collected at relatively short time intervals, space use of

individuals can now be described in detail previously

unavailable to researchers. By applying BBMM to

estimate the movement path of individuals, researchers

are able to more precisely identify the probability of an

area being utilized. Secondly, despite location error

being a well-known component of biotelemetry studies

(White and Garrott 1990:46), a direct avenue for

incorporating this error into estimates of space use is

lacking (Powell 2000). This ability to account for

FIG. 5. Probability of a female black bear crossing along a 3.5-km stretch of Highway 95 in northern Idaho.

TABLE 1. Parameter estimates for the linear model explaining variation in log-transformed
probability of occurrence values for a female black bear along a highway in northern Idaho,
USA.

Variable
Standardized

parameter estimate
Parameter
estimate SE t P

HumDev �0.717 �20.8 2.59 �8.01 ,0.001
DistWat 0.010 0.01 0.01 1.07 0.290
CanCov 0.001 0.10 9.35 0.01 0.992

Note: Variables are amount of human disturbance (human development), distance to water, and
canopy cover.
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location error will become increasingly important as

technological advances continue to shrink the time

between locations and location error becomes the

ultimate limit on the accuracy of estimating animal

movements. Lastly, the ability to describe long-distance

movements (e.g., migration routes) probabilistically

represents a significant improvement over methods that

simply connect locations using straight lines (e.g., Stokes

et al. 1998, Saher and Schmiegelow 2004).

Assumptions and future directions

The BBMM is based on the properties of a

conditional random walk between locations. Although

it is certain that most animals do not move in a truly

random fashion, using a model based on stochastic

movement can still be justified (Turchin 1998). In the

absence of any other information on how an animal

moved from one location to another, a Brownian bridge

can serve as a useful approximation or null model of the

actual movement process. However, violating the

assumption of random movement between pairs of

locations may become much more prominent as the time

interval between locations increases. For example, when

using the Brownian bridge model to estimate the home

range of an animal, the assumption of random

movement between locations will become progressively

unrealistic as the time interval between locations

increases. In this situation, animal movements between

locations separated by long time intervals are more

likely to reflect a biased random walk (i.e., toward the

home range center) than a simple random walk between

locations.

The previous discussion brings up an important

question regarding data requirements for the BBMM

to be useful. In particular, what is the maximum time

interval between locations? Unfortunately, there is no

single answer that will apply to all situations. Instead,

the BBMM will be able to identify the movement path

with progressively less confidence as the time interval

increases (Fig. 6). However, in addition to the time

interval between locations, the amount of uncertainty is

also dependent on the amount of location error and an

FIG. 6. Probability densities of four pairs of location
separated by varying time intervals and distances, constructed
using the Brownian bridge movement model. Probability
densities in (a) and (b) were constructed from two pairs of
locations separated by the same distance (550 m) but different
time intervals: (a) 20 min; (b) 240 min. Probability densities in
(c) and (d) were constructed from two pairs of locations
separated by the same amount of time (40 min) but different
distances: (c) 275 m; (d) 925 m.

PLATE 1. Female black bear with cubs crossing a road in southern Alaska. Photo credit. J. S. Lewis.
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animal’s mobility, which will necessarily be specific to

the particular individual under investigation. For

example, given two sets of consecutive locations from

animals with differing mobility, but otherwise separated

by the same time and distance, the utilization distribu-

tion for the more mobile animal will be flatter (i.e., less

certain of the movement path) than that for the less

mobile animal. Thus, until future work establishes these

relationships, we recommend that researchers critically

evaluate whether the assumption of a conditioned

random walk with constant movement rate holds for

the time intervals contained within their location data.

We chose to model animal movement based on

continuous time and space because the resulting

distributions have the advantage of being amenable to

direct calculations. However, we recognize that real

animal movement is more exactly portrayed as a discrete

process, with animals taking straight-line steps or

movements of length k and time between steps s. Using

a diffusion-based process like Brownian motion to

approximate a stochastic process that might be discrete

in time and/or space is similar in spirit to using a normal

distribution to approximate a sum or average of discrete

random variables when the central limit theorem

applies. For example, the distribution of a two-

dimensional discrete random walk at time t can be

approximated by the Gaussian distribution with vari-

ance r2 ¼ 4k2/2s if the ‘‘time of observation t is much

greater than the duration time s of each random step,

and the scale of observation x is much greater than the

length k of each random step’’ (Okubo 1980:10). In

other words, the approximation is useful when the

animal takes a large number of steps during the time

interval between locations.

For all of our examples, we assumed that the

distribution of location error was circular normal and

used a single estimate of the variance. Although the

assumption of normally distributed errors is appropriate

for GPS telemetry (J. S. Horne, personal observation),

this may not hold for locations collected using other

satellite systems (Vincent et al. 2002). Future work

should seek to derive other versions of the BBMM when

location errors are nonnormally distributed. We used a

single variance for all locations to simplify calculations.

However, if researchers have reason to believe that each

location has a unique error (see Lewis et al. 2007), this

easily can be incorporated into the BBMM. Similarly,

we simplified calculations by using a single estimate of

the Brownian motion variance parameter for all pairs of

locations. However, because this parameter is related to

the mobility of the animal, it would be reasonable to

consider different variances for different behaviors. For

example, Morales et al. (2004) used characteristics of

observed paths (i.e., turning angles and movement

distances) and Jonsen et al. (2005) used state–space

models to identify different movement states of animals

(e.g., encamped vs. exploratory). If researchers can a

priori identify these periods, separate variance param-

eters could be estimated for each period. These different

estimates could then be incorporated into the BBMM to

more accurately depict animal movements.

The resulting probability distribution of the movement

path based on the BBMM is dependent on several

factors, including the distance between observed loca-

tions both in space and time, the error associated with

each observed location, and the animal’s mobility. From

the standpoint of initially setting up a telemetry study, it

is important to realize that one of these factors can be

manipulated by the researcher (i.e., time interval between

locations). By decreasing the amount of time between

successive locations, the uncertainty of the actual path

can be reduced (Fig. 6). As the time interval increases,

there is less and less certainty of the actual path and this

uncertainty is reflected in a flatter probability distribu-

tion between observed locations. Future work will need

to investigate differing time intervals and their effect on

estimates of space use using the BBMM.
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APPENDIX

Derivation of Brownian bridge probability distribution when location errors are normally distributed (Ecological Archives E088-
142-A1).

SUPPLEMENT

Visual Basic source code containing the algorithms described in this paper (Ecological Archives E088-142-S1).
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