Techniques to Examine the Brain

Psychology 372

Physiological Psychology

Steven E. Meier, Ph.D.

Access the video for this presentation through Blackboard or listen to the audio lecture while viewing these slides
Invasive Techniques

- Lesioning
 - Electrical
 - Chemical
 - Radio Frequency
- Electrical Recording
- Cannulations
- Push Pull
- Invivo Autoradiography
- Others
Non-Invasive Techniques

- X-Ray
- CT
- PET
- MRI and FMRI
- Electro Recording (EEG)
- SPECT
- SQUID
- Others
The Stereotaxic Instrument

- The holder allows you to swing in all directions.
- A vertical knob allows you to vary the depth of the probe.
- The anterior/posterior knob allows you to go front or back.
- A lateral knob allows you to go from side to side.
Animal Stereotaxic Instrument
General Procedure

- Identify and measure the dependent measure in the organism.
- Anesthetize the animal.
- Open the scalp.
- Drill a trephine hole (hole in the skull).
- Place the animal into the stereotaxic instrument.
- Use the brain atlas to see where you want to go.
General Procedure

- Find specific brain landmarks.
- Use stereotaxic instrument to insert:
 a. electrodes.
 b. cannulas.
 c. other instruments.
- Perform the technique you want, or you can seal the material in place with a glue-like substance.
- Allow the animal to recover.
- Monitor the dependent measure depending on the technique used.
Techniques You Can Use

- Lesioning (Ablations)
- Cannulations
- Push Pull
- Electro recording
Electrical Lesioning

- Lesioning destroys particular brain structures.
- You then observe what happens to the animal before and after the lesioning.
- There are several ways to lesion.
Electrolytic (Use DC current)

- Observe the animal for the particular behavior of interest.
- Insert an insulated needle into the placement point. The needle is insulated except at the tip.
- Apply current and burn the tissue, which ultimately dies.
- Observe the animal for changes in behavior.
Disadvantages

- The electrode leaves a tract into the brain. Thus, you are also damaging other brain tissue.
 - Solution: destroy the tissue from several different angles.
- Apply too much current, you will deposit metal particles from the electrode.
 - Metal particles can irritate tissue
 - Can cause focal points which may result in seizures.
Radio Frequency Techniques.

- Radio frequency coagulates tissue. (Its action resembles that of a microwave oven.)
- Insert an electrode insulated except at the tip.
- When energy is applied to the electrode, water molecules oscillate inside neurons.
- The oscillation builds up heat and kills the cells in the area.
Advantages and Disadvantages

Advantage: Avoids metal particles.

Disadvantage: Still have the electrode tract.
Chemical Techniques

• Most commonly used technique today.

• Instead of an electrode, use a cannula or tube.

• Allows you to place chemicals in place where they can kill or influence neurons.
Neurotoxins

- **6 Hydroxydopamine (6HDA)**
 - Destroys dopamine neurons but leaves other neurons alone.
 - Advantage: Allows you to only kill one type of neuron.

- **Kanic Acid**
 - Destroys somas (cell bodies) of neurons, but leaves axon tracts from other neurons alone.
 - Advantage: Can kill neurons in one area, but does not disturb neuron tracts from other areas
Chemical Stimulation Techniques.

- Are the opposite of chemical lesioning
 - Researcher may stimulate neurons by putting in a neurotransmitter.

- May also put in agonists (analogs of neurotransmitters that behave like them).

- May put in compounds with unknown effects.
General Cannulation Procedures

- Make a trephine hole.
- Insert cannula with stereotaxic device.
- Cement in place with dental cement.
- Allow animal to recover and behave normally.
- Later, deliver compound by injection (usually when the animal is behaving).
- Observe the animal.
Disadvantage

- Over time the area fills up with the chemical.

- Solution: Use a push-pull technique.
Push-Pull Technique

- Is similar to other chemical techniques except that the cannula is a little wider and has an extra tube within the main tube.
- Allows you to insert solutions
- Also allows you to withdraw excess compounds or other products for analysis.
Compound

Push-Pull Technique
Advantages of Push-Pull

- Localizes better.
- Can add dyes or radioactive labels
- Can change dosages or concentrations.
- Can change compounds.
- Can analyze materials you withdraw if you get an effect--gives better control.
- Miniaturization is improving the technique further.
Cannulations

- Where you place a catheter into the circulatory system of an organism
 - Jugular vein (Neck)
 - Femoral Artery or Vein (leg)
 - Brachial Artery or Vein (arm)
 - Vena Cava (vein that fills the heart)
 - Aorta (artery that leaves the heart)
Advantages

- Can put the catheter almost anywhere
- It’s a good way to deliver materials in the venous system.
- Some materials are inserted to get past the blood–brain barrier.
- If the molecules of a drug are large, they will stay in the vascular system and not cross the blood-brain barrier.
- You can do the procedure in alert animals.
Disadvantages

- Clotting occurs after some time period at the end of the catheter.
 - Femoral 3-10 days
 - Descending Aorta 3-5 weeks
Other Similar Techniques

- Can insert cannulas in the mouth.
- Can insert cannulas in the stomach.
- Can insert cannulas in the liver.
- Can insert to withdraw spinal fluid.
- Can also place catheter in the fourth ventricle, substantia nigra, space above the cerebellum,
- Other locations.
Osmotic Pumps

- Used to deliver compounds into an organism by osmosis.
- Can deliver one or multiple compounds over a prolonged period.
- Similar devices can be used in humans.
Osmotic Pumps

To Needle

Osmotic Pressure

Compound/Solution

Osmotic Pressure
Types

- Single Barrel
- Multi Barrel
Procedure

- Put a needle where you want it.
 - Can use stereotaxic devices if needed
- Put the pump inside the body (usually the back) and tie off the end with silk until you need to deliver the compound.
- Let animal recover from surgery
- Cut the silk
- Observe the animal
Advantages

- Can deliver a substance for prolonged periods
- Can deliver a constant amount of a substance instead of one large amount
 - Decreases the spikes of a drug.
- Easy to do
- Can use computer technology to deliver multiple compounds on some schedule.
- Can use multi-barrel pumps
Autoradiography

- auto (self-generating) + radiography (using radioisotopes to give you a print on film)
- Uses radioactive isotopes with unstable nuclei that throw off energy that can be recorded.
- Used to locate receptor sites.
Types of Radioisotopes or Radiolabels

- Plutonium 242
- Carbon 14
- Uranium 239
- Tritium
- Calcium 45
- Iodine 125
- Carbon 11
- Others
Invivo Autoradiography Procedure

- Take an isotope and attach it to the non-working end of the substance you are evaluating (e.g., hormones).
- Resulting isotope is called a tag.
Steps

- Radiolabel the substance you want to see.
- Inject the compound into the animal.
- Let it circulate in the blood and go to the receptors.
- Kill (sacrifice) the animal.
- Take out the brain or other organ you are interested in.
- Microtone or slice the brain or organ.
Steps

- Put tissue slices on a piece of film. Particles coming off the slice exposes the film (x-ray or 35mm).
- Wait days or weeks.
- Take tissue off the slice.
- Put on a computerized counter screen.
- Look for dark spots.
- If you have any spots, that is where the receptor sites are located for the substance.
- Tells you where the test receptor sites are located.
Advantages

- Is a first step in trying to find receptor sites.
- Good procedure if you are not sure where receptor sites are located.
- Good techniques for new substances and you are not sure where they go.
- Is faster than invitro procedures.
Disadvantages

- Is more expensive
- Sometimes you don’t see anything. If so,
 - There may be procedural errors
 - The assay decayed
 - There may be no receptors
Invitro Autoradiography

- *In vivo* means "in life"; *in vitro* means "in a test tube" (literally, "in glass.")
- Used when you have an idea of where the receptor is located.
- Used to determine finer detail
Procedure

- Kill (sacrifice) the animal.
- Remove the brain or other tissue.
- Slice the brain.
- Pour the radioactive hormone or other substance over the tissue.
- Allow to incubate. The radio labeled compound will bind to the receptors.
- Allow the label to bind.
Procedure

- Pour off the excess compound.
- Put the slice into a computer image analysis scan system to detect/count the particles.
 - If the slice gives off activity, the substance must be binding with receptors.
 - If no activity, there are no particles binding to receptors. Thus, you can conclude there are no receptors.
- You can put the tissue under a scanning computer and count the number of receptor sites.
Micropunch Techniques

- Use a microtone to slice the tissue.
- Use a specialized hypodermic needle sharpened at the end to punch out a piece of tissue.
 - Microsample could be a nucleus.
 - Sample size usually ranges between 10-50 micrograms or micrometers.
- Take a core sample.
- Blow material from the needle into a test tube.
Micropunch Techniques

- Break up the Tissue.
 - Use a Polytron.
 - Radial blades vibrate cells, mild enzymes separate ligands.
 - Destroys ligands but not cell bodies.
 - Exposes the cell membrane so all the receptor sites are exposed.
- Incubate tissue in solution.
- Wash off liquid from cells with a buffer.
- Put tissue in a counter.
 - High count, you have lots of receptors.
 - Low count means low receptors.
Conclusion

• Many invasive techniques
• Used for lots of reasons.
• Allows for fine level of analysis.