Basal Ganglia

Psychology 372
Physiological Psychology
Steven E. Meier, Ph.D.

Listen to the audio lecture while viewing these slides

Basal Ganglia

• Does not have direct input or output to the spinal cord
• Receives information from the cortex
• Sends output to
 • Brain stem via the thalamus
 • Cortex

Past

• Had specific systems involved with movement
• Pyramidal
• Extrapyramidal
• Corticospinal
• Other structures including BG

Today

• Many more parts are involved
• Movement problems can also occur with problems in the
 • Brain stem
 • Red Nucleus
 • Cerebellum

Consists of Four Principal Nuclei

• Striatum
• Globus Pallidus (Pallidum)
• Substantia Nigra
• Subthalamic Nucleus

Striatum

• Has three important subdivisions
 • Caudate Nucleus
 • Putamen
 • Ventral Striatum (Includes Nucleus Accumbens)
• Mostly divided by the internal capsule
 • Are fibers that go from the cortex to the thalamus in both directions.
Psyc 372 – Physiological Psychology

Striatum

- Receives most of the fibers from the
 - Cortex
 - Thalamus
 - Brain Stem Structures
- Sends fibers to
 - Globus Pallidus
 - Substantia Nigra

Psyc 372 – Physiological Psychology

Striatum

- All areas of the cortex send excitatory (glutaminergic) fibers to the striatum.
- Also gets dopaminergic projections from the midbrain
- Finally gets serotonergic input from the Raphe Nuclei
- Contains mostly GABA neurons
- Has two separate parts (called patches)
 - Matrix
 - Striosome
- Both are separate and have different types of receptors

Psyc 372 – Physiological Psychology

Globus Pallidus (Pallidum)

- Lies medial to the Putamen
- Has two segments
 - External
 - Internal
- Use GABA as a NT.

Psyc 372 – Physiological Psychology

Substantia Nigra

- Lies in the midbrain on medial side of the internal capsule
- Has a compact zone (pars compacta)
 - Is a distinct nucleus
 - Contains
 - Many Dopamine neurons
 - Oxidized pigment from Dopamine
 - Neuromelanin (makes the structure dark)
 - Increases with age

Psyc 372 – Physiological Psychology

Subthalamic Nucleus

- Lies below the thalamus
- Lies above the substantia nigra
- Is closely connected to
 - Parts of the Globus Pallidus
 - Substantia Nigra
- Uses glutaminergic neurons
 - Are the only excitatory neurons in BG.
 - All others are inhibitory
Psyc 372 – Physiological Psychology

Subthalamic Nucleus
- **Input to the basal ganglia** is from the
 - Primary motor cortex
 - Substantia Nigra
- **Output of the basal ganglia** is to
 - Primary motor cortex
 - Supplemental motor area
 - Premotor area
 - Brainstem motor nuclei (ventromedial pathways)
- **Cortical Basal Ganglia Loop**
 - Frontal, parietal, temporal cortex send axons to caudate/putamen
 - Caudate/putamen sends axons to the globus pallidus
 - Globus pallidus sends information to the motor cortex via thalamic nuclei

Functions
- Past - Only motor related functions
- Today
 - Motor
 - Cognitive
 - Emotional
 - Motivated behavior

Output from the BG
- Output is very important
- Output neurons discharge at high frequency
- **Structures**
 - Internal Pallidal Segment
 - Pars Reticulata of Substantia Nigra
 - Both tonically inhibit target nuclei in the thalamus and Brain Stem
- Modulated by two parallel pathways
 - Indirect Pathway
 - Direct

Indirect
- Is purely Gabainergic
 - Goes first to external Pallidal Segment
 - Then goes to subthalamic nucleus
 - Finally goes to output nuclei in subthalamic nucleus
 - Contains excitatory glutaminergic neurons

Direct
- Striatum to Pallidum
- When activated shuts down the tonically active neurons
- Permits the thalamus and cortex to be activated

Comparisons
- Direct
 - Provides positive feedback
 - Activation disinhibits the Thalamus
 - Increases thalamus/cortical activity
 - Facilitates movement
- Indirect
 - Provides negative feedback
 - Activation inhibits the thalamus
 - Has opposing effect
 - Shuts down movement
Psyc 372 - Physiological Psychology

Dopamine
- Is very important
- Direct are D1 receptors are excitatory
- Indirect are D2 receptors are inhibitory
- Synaptic actions are different
 - Both decrease inhibition of thalamocortical neurons
 - Thus both facilitate movement
- Decrease dopamine in the striatum
 - Activity increases output nuclei increases
 - Output nuclei then inhibit thalamocortical neurons
 - Movement decreases

Psyc 372 - Physiological Psychology

Disorders
- Many different types
- Parkinson’s syndrome/disease
- Huntington’s Disease
- Most involve some sort of motor functioning problem.