Stimulants
Xanthenes and Caffeine

Psychology 472
Pharmacology of Psychoactive Drugs

Listen to the audio lecture while viewing these slides

Many Types of Xanthenes

- Xanthenes
 - Theophylline (Tea)
 - Theobromine (Chocolate)
 - Caffeine (Coffee)

Theophylline

- Found in Tea
 - Has very little in it when made so it has minimal effects
- Primarily used for breathing problems in asthmatics
 - Relaxes and opens bronchial trees

Theobromine

- Found in Chocolate
- Has far less potency than caffeine

Caffeine

- Most commonly used psychoactive drug in the world
- Average intake per day in US 250mg/day
 - Sweden and Finland 400mg/day
- Causes tolerance and withdrawal – not considered drug abuse
- No regulation on sale or use

Caffeine Content

<table>
<thead>
<tr>
<th>Item</th>
<th>Average (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home regular cup of Coffee (8oz)</td>
<td>65-175</td>
</tr>
<tr>
<td>Starbucks (8oz)</td>
<td>180</td>
</tr>
<tr>
<td>Starbucks (16oz)</td>
<td>330</td>
</tr>
<tr>
<td>McDonalds (16oz)</td>
<td>145</td>
</tr>
<tr>
<td>Latte or Mocha (16oz)</td>
<td>75</td>
</tr>
<tr>
<td>Espresso (1.5oz)</td>
<td>64</td>
</tr>
<tr>
<td>Non-Caffeinated Coffee</td>
<td>2.4</td>
</tr>
<tr>
<td>Tea (5oz)</td>
<td>50</td>
</tr>
<tr>
<td>Amp Green Tea (16oz)</td>
<td>155</td>
</tr>
<tr>
<td>Cocoa (5oz)</td>
<td>5</td>
</tr>
</tbody>
</table>

Range 58-185mg
Others

<table>
<thead>
<tr>
<th>Item</th>
<th>mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Classic (12oz)</td>
<td>35</td>
</tr>
<tr>
<td>Coke Zero (12)</td>
<td>35</td>
</tr>
<tr>
<td>OTC analgesics (aspirin)</td>
<td>35-65</td>
</tr>
<tr>
<td>OTC cold remedies</td>
<td>30</td>
</tr>
<tr>
<td>No-Doz</td>
<td>100 per pill</td>
</tr>
<tr>
<td>No-Doz, Maximum Strength</td>
<td>200 per pill</td>
</tr>
</tbody>
</table>

Energy Drinks

- Arizona Extreme Energy Shot®: 100 mg / 8 oz
- Beaver Buzz®: 110 mg / 8 oz
- BuzzWater®: 100 mg / 8 oz
- Daredevil®: 120 mg / 8 oz
- Hogan Energy®: 80 mg / 8 oz
- Sky Rocket® and Power Shot®: 100 mg / 1 oz
- Upshot™: 200 mg / 2.5 oz

Positive Effects

- Enhanced mental alertness
 - Allows for sustained intellectual efforts - studying
 - No major disruption of coordinated intellectual thought or motor activity
- Provides increased energy
- Gives a sense of well-being
- Reduced fatigue
- Sleep onset is delayed

Negative Effects

- Muscles
 - Decreases muscle coordination and timing
 - Causes muscle tremors and shaking
- Heavy doses - 1.5 grams
 - Agitation
 - Anxiety
 - Tremors
 - Rapid breathing
 - Insomnia
 - Diarrhea
- LD Approximately 10 grams
 - 100 cups of coffee
 - 100 OTC stimulant capsules

Effects

- Caffeine causes stimulant action on the heart
 - Increases cardiac workload
 - Stronger contractility
 - Increases cardiac output
 - Dilates coronary arteries
 - Provides more oxygen to the heart

More Effects

- Constricts cerebral blood vessels
 - Decreases blood flow by about 30%
 - Can relieve headaches
- Causes bronchial relaxation
- Causes increased secretion of gastric acid
 - Result, nausea, stomach aches
- Causes increased urine output
Effects

- Chronic use is associated with habituation and tolerance
- Quitting may cause withdrawal
 - Headaches
 - Drowsiness
 - Fatigue
 - Negative mood

Reproductive Effects

- Consumed by estimated 75% of pregnant women
- Breast milk contains equal or higher concentration levels than mothers' blood plasma
- Freely crosses the placental barrier
- Safety still unresolved
 - One study shows 300 mg relatively safe
 - Another study shows 160 mg may cause growth retardation
 - 300mg intake in the month before doubled the risk of spontaneous abortion
 - Moderate consumption does not increase the risk

Uses of Caffeine

- Asthma
 - Causes bronchial dilation
- Narcolepsy
 - Helps maintain daytime wakefulness and alertness
- Reduction of headache in conjunction with aspirin
- Migraines
 - Restricts blood flow in the cerebral cortex

Pharmacokinetics

- Intake is usually oral
- Is rapidly and completely absorbed
 - Significant blood levels reached in 30-45 minutes
 - Levels peak in about 2 hours
- Is distributed throughout total body water
 - Equal concentrations throughout body and brain

Continued

- 3.5 to 5 hours half life
 - Extended half life for
 - Elderly
 - Pregnant women
 - Up to ten hours
 - Infants
 - Decreased half life for smokers

Metabolized

- Metabolized by the CYP1A2 subgroup of liver enzymes into three metabolites
 - Theophylline
 - Bronchial relaxation
 - Paraxanthine
 - Theobromine
 - Theophylline and Paraxanthine act similar to caffeine
 - 10% is excreted unchanged
Pharmacodynamics

Adenosine

- Is created when the body uses ATP for energy
- Is a neuromodulator
 Impacts the rate at which neurons fire
 Uses a G-Protein system
 The greater the activity, the more adenosine that is produced
 - Causes sedative, depressant, and anticonvulsant actions
 - Works to slow down the system
 - Important to sleeping
 - Adenosinergic neurons form a diffuse system
 - No exclusively adenosinergic pathways
 - Adenosine stimulates GABAergic inhibitory neurons

Locations

- Throughout the body
 - Blood vessels
 - Fat cells
 - Heart
 - Kidneys
 - Smooth muscle
 - Others

Receptors

- Four types
 A1 inhibits excitatory neurons
 - Dopamine, glutamate, and ACh secreting neurons
 - Reduces production of cAMP
 - Slows the activity of the cAMP Protein Kinase
 - Reduces occurrence of the action potential
 - A2a Stimulates inhibitory neurons
 - Also inhibits Dopamine neurons
 - Stimulates GABAergic neurons

Mechanism of Action

- Adenosine A1 receptors
 - Inhibit the release of dopamine and glutamate
 - Inhibits the release of acetylcholine

- Blockade of A1 receptors
 - Modest reward
 - Increased vigilance and mental acuity
 - Creates arousal effect

Mechanism of Action

- Adenosine A2A receptors
 - Stimulate GABAergic neurons of inhibitory pathways
 - Inhibits dopamine activity

- Blockade of A2A receptors
 - Increases the potency of endogenous dopamine
Effects of Adenosine

- When occupied by adenosine they shut the system down
- Prevents the system from becoming over stimulated

Effects of Xanthenes

- Caffeine and others block Adenosine Receptors
- Results
 - Adenosine cannot bind to the receptor
 - Get stimulation
 - Does not stimulate dopamine release

Importance of Caffeine

- Creates additive and synergistic effects with other compounds
- Increases withdrawal symptoms of individuals coming off of alcohol and sedative hypnotics
 - Seizures
 - Agitation
 - Headaches
 - Nausea (also with Opiates)

Alcohol and Energy Drinks

- 6-12% alcohol with stimulants
- Allows you to drink longer
 - Get drunk faster
- Become a wide awake drunk
 - Still have the same alcohol effects on motor coordination
- Myth – Prevents hangovers
 - Alcohol causes dehydration
 - Energy drinks are diuretics – more dehydration
 - Greater headaches

Conclusions

- In moderation, are probably safe
- Do develop tolerance and withdrawal
- Can cause paranoia and other psychological disorders at high levels