A brief history of wildfire:
the past as a window to future

REM 244 Guest Lecture, 17 Jan., 2012
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Key Questions for Today’s Class

1. What can we learn from the past?
2. How do we learn from the past?

3. What have we learned?



1. What can we learn from the past?

A. Context and perspective
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Presenter
Presentation Notes
EARTH = 4.6 BILLION yr old

 Charcoal evidence of fire on Earth dates back to 420 million years
 The “fire window” = 13-35% O2 in the atmosphere
 Domestic use of fire dates back 400,000 yr
 Foraging use of fire dates back 50,000 yr
 Agricultural fire dates back to 10,000 yr (as does agriculture)

Life on Earth: 
4.5-billion yr history
 5-50 million species
 Less than 2 million described (4-40%)
 Majority of species extinct (e.g. 90% of mammals)


What do we need for fire?
1. Fuel

Flame

2. Oxygen

3. lgnition fuel




What do we need for fire?
1. Fuel

2. Oxygen

3. Ignition

Terrestrial vegetation

Oxygen — 13-35% (today
= 21%)

Lightning, volcanoes,
humans



D]How old Is fire?
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 Charcoal evidence of fire on Earth dates back to 420 million years
 The “fire window” = 13-35% O2 in the atmosphere
 Domestic use of fire dates back 400,000 yr
 Foraging use of fire dates back 50,000 yr
 Agricultural fire dates back to 10,000 yr (as does agriculture)

Life on Earth: 
4.5-billion yr history
 5-50 million species
 Less than 2 million described (4-40%)
 Majority of species extinct (e.g. 90% of mammals)
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Presentation Notes
 Charcoal evidence of fire on Earth dates back to 420 million years
 The “fire window” = 13-35% O2 in the atmosphere
 Domestic use of fire dates back 400,000 yr
 Foraging use of fire dates back 50,000 yr
 Agricultural fire dates back to 10,000 yr (as does agriculture)


O :
Context and perspective

Fire Is a longstanding natural process,
present throughout the evolution of the life
and much of the planet
“Fire Is something that ecosystems do, not something

that happens to them” - D. Falk

“Natural phenomenon, human disaster”
- My high school headmaster

Erickson Creek Fire, Interior Alaska, 2003 e . :.“E :
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Presentation Notes
Fire is a longstanding natural process, present throughout the evolution of many organisms.
Much of life has evolved in a flammable world
Fire has direct and indirect effects on biological, physical, and human systems


1. What can we learn from the past?

A. Context and perspective

B. How does fire respond to
environmental change? Use the past
as a natural experiment.



The past as a natural experiment
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The past as a natural experiment

Millennial to centennial: glacial-Holocene transition

approximate temperature

anomaly (degrees C)

Ice core temperature record from the Greenland Ice Sheet
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The past as a natural experiment

Centennial-decadal:
past 1000 years

Earth’s history is
filled with well-
understood
environmental
variability, at
multiple scales

http://www.ipcc.ch/publications and data/ar4/wgl/en/figure-

6-10.html

Temperature anomaly (°C wrt 1961-1990)
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Key Questions for Today’s Class

1. What can we learn from the past?
a) Context and perspective
b) How fire responds to environmental change

2. How do we learn from the past?



Reconstructing the past
Proxy — a stand In

Biological Proxies: =g
= tree rings T
= pollen
= forams
= diatoms

Physical Proxies:
= charcoal
= |sotopes
= glaciers
* poreholes




Important characteristics of all proxies:

¥

= |ndirect measures

= Precision varies

= Availability varies

http://www.ncdc.noaa.qgov/paleo http://web.utk.edu/~grissino/default.html http://www.ipcc-wg2.org/index.html
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Fire-scarred trees: cambium killed by fire on a
portion of the tree; growth around scar used to
determine date of fire

Fire scars

Birth year
of tree

Fire scared ponderosa pine. http://www.ncdc.noaa.gov/paleo/impd/firescar-photo.html
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Fire-scarred trees:

Fire scars from individual trees

c) Bake
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Presentation Notes
Even when trees are cross dated, one still has to determine how many trees are enough to constitute a fire at that “point”. 

“Plots or transects need to be large enough to include sufficient evidence about fire history at a point, but no larger, because of competing errors” – e.g., false positives. 
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Lake-sediment records
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Presenter
Presentation Notes
If we view past climate change as a series of experiments that have been run over thousands of years, then we can think of lakes as the field notebooks where ecosystems responses are recorded. 

In particular, as plants on a landscape produce pollen, this pollen becomes integrated into the sediments at the bottom of lakes, where it is preserved for thousands of years in an anoxic environment. We can use these fossil pollen grains to reconstruct the vegetation assemblages that surrounded this lake, with a spatial scale on the order of several kilometers.

Likewise, macrofossils, like this conifer needle, are also preserved in lake sediments, providing additional information on past vegetation, as well as materials for radiocarbon dating, which allows us to ascribe a date is each level of mud in the past. 

Disturbance processes, such as fire, also leave signatures in lake sediments. For example, when this fire burned around this lake, macroscopic charcoal was integrated into the lake sediments, creating a peak that can be identified thousands of years later. 

All we have to do is collect a sediment core from the bottom of this lake, as then decipher the “handwriting” in the field notebook. 


| ake-sediment records

Chickaree Lake, RMNP, CO:

Charcoal peaks from past fires
r AD 1782 tree-ring dated, high-severity fire
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Hiauera et al. in prep.
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Geomorphic Records

Severe burns

 smooth soll
surfaces

 reduced
Infiltration

e (greatly
Increased
surface runoff

‘Large fire-
related events’

Meyer et al. 1992
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Geomorphic Records

Fire-related sedimentation events
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Presenter
Presentation Notes
Jen Pierce, Associate Professor at Boise State University, examined the alluvial fans created in small streams draining into the South Fork of the Payette River. 

She used Carbon 14 dating to date layers of sediment deposited in floods. These often contained charcoal. She could also date some of the wood pieces (“macrofossils) that she found in the sediment. 


Accuracy of fire history proxies:
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Key Questions for Today’s Class

1. What can we learn from the past?

a) Context and perspective
b) How fire responds to environmental change

2. How do we learn from the past?

3. What have we learned from the past?



3. What have we learned from the past?

A. Climate has been a primary control of
biomass burning, at multiple time
scales



Millennial,
Global

Fire regimes during the Last Glacial

A.-L. Daniau®*, S.P. Harrison?, PJ. BartleinP®

25chool of Geographical Sciences, University of Bristol, Bristol, BS8 155, UK
" Department of Geography, University of Oregon, Eugene, OF 97403 USA

Quaternary Science Reviews 29 (2010) 2918-2930

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev
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Global biomass burning varies
with global temperature
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Millennial,
Global

Climate warming
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Millennial, Wildfire responses to abrupt climate change
Hemispheric in North America

J. R. Marlona1, P. ). Bartlein®, M. K. Walsh3, 5. P. Harrison®, K. ). Brown=d, M. E. Edwards=f, P. E. Higueras, M. ). Powerh,
R. 5. Anderson', C. Brilesd, A. Brunelleh, C. Carcallled, M. Daniels®, F. 5. Hu', M. Lavole™, C. Long™, T. Minckley®,
P. 1. H. Richard?, A. C. Scottd, D. 5. Shafer”, W. Tinner®, C. E. Umbanhowar, Ir*, and C. Whitlock3
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Millennial,
Regional

Yellowstone NP:

17,000 yr. fire history
correlates with
summer insolation

(temp.)

Fire frequencies vary
with climate at
millennial time
scales

Age (calyrB.P. x 1000)

Fire Temp.
frequ. proxy
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R2 = 0.59-0.79
130,000 ha study area 


3. What have we learned from the past?

A. Climate has been a primary control of
biomass burning, at multiple time
scales

B. Humans and fire have always been
tightly linked, but human impacts on
large-scale fire regimes have varied



Humans and fire: (Bowman et al. 2009)

1',:;3* Agricultural fire
o Foraging fire

_ ) Diomestic fire
Bipedalism

1 oya 100 mya 10 mya 1 mya 100 kya 10 kya

satellite fire monitoring
Mechanized fire fighting
Industrial fire
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Years before present



Australian aboriginals and “Firestick farming” —
Iong-standing and increasingly-relevant question.
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Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev
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Late Quaternary fire regimes of Australasia
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“Rapid landscape transformation in South Island, New
Zealand, following initial Polynesian settlement

David B Mofe thy', Cathy Whitlodk®, Janet M. Wilmshuorst®, Matt 5. MoGlone®, Mairie Fromont®, Kun Li5
Ann Dieffenbacher-KralF, William 0. Hobbs®, Sherilyn €. Fritz*, and Edward R. Cook’

= |nitial burning
period:
widespread
and coincident
with human
arrival

= |ittle evidence
that climate
change played
a roll

McWethy et al. 2010

Humans had immediate
and dramatic impacts
on forest communities,

via fire.
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Presentation Notes
Maori arrival = 700-800 years ago

Corresponds to 40% reduction in forest cover, largely via fire use.

*Positive feedbacks initiated when replacing wet forest with early-successional shrubs


Climate and human influences on
global biomass burming over the past
two millennia

J.R.MARLON™, P J. BARTLEIN", C. CARCAILLET?, D. G. GAVIN', S. P HARRISON?, P. E. HIGUERA?,

F JOOSE, M. J. POWER® AND I. C. PRENTICE?
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Climate dominant
until ca. mid 19t
century, then
human impacts
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* Fire has been a key process in the evolution
of our planet, for millions of years

= Fire regimes have varied at multiple time
scales, largely in response to direct and
Indirect impacts of climate change

= Human have existed with fire for millions of
years, and impacts vary among ecosystems
and time periods




Questions?

s -

High severity 1988 fire in subalpine forest of Yellowstone National Park.




Some Resources

NOAA Paleoclimate Web Page: http://www.ncdc.noaa.gov/paleo/

— Information on all aspects of paleoclimate research and findings,
including raw data.

IPCC 2007, Working Group 2 (Scientific Basis): http://www.ipcc-
wg2.org/index.html

— The Intergovernmental Panel of Climate Change’s latest report.

The Ultimate Tree-ring Web Page (literally):
http://web.utk.edu/~grissino/default.html

— Everything you could want to know about tree-ring research.

Brown University pollen viewer:
http://www.geo.brown.edu/georesearch/esh/QE/Research/VegDynam/VegA
nima/Viewer31/WebViewer.html
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ldaho ‘large events’ & Yellowstone National Park
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Presenter
Presentation Notes
The frequency of large fire events was higher 1050-750 years before present during the Medieval Climate Anomaly (MCA), a time of unusually warm, dry climate in this region. MCA was followed by the Little Ice Age (LIA) (1400-1900) This is the period for which we have fire history data from tree ring records. 

These data suggest that frequent small fires in ponderosa pine forests occurred during an unusually cool period. What if climate warms again? What does this say about the degree to which we have attributed changes in fire frequency to fire exclusion? Is there more of a climate signal than we have been assuming? 

Records of fire-related sedimentation events preserved in alluvial fans provide a record of centennial to millennial-scale variations in Holocene fire activity. 
Frequency of fire-related sedimentation events varies over the Holocene, likely with changes in climate.  
In Idaho, colder intervals are characterized by frequent low severity fires
Warmer periods are characterized by large fire-related debris flows in both Idaho and Yellowstone. 
Given the powerful influence of climate on fire regimes, restoration may be difficult in a warmer and drier future.
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