A brief history of wildfire: the past as a window to future

REM 244 Guest Lecture, 17 Jan., 2012

Philip Higuera Assistant Professor

University of Idaho College of Natural Resources "The farther backward you can look, the farther forward you are likely to see." - Winston Churchill ECOLOGY

High Country News

Salvage Harvesting Policies After Natural Disturbance

D. B. Lindenmayer,¹ D. R. Foster,² J. F. Franklin,³ M. L. Hunter,⁴ R. F. Noss,⁵ F. A. Schmiegelow,⁶ D. Perry⁷

Natural disturbances and the biologic legacies produced by them are offer poorly understood by policy-make and natural-resource managers. Recent larg scale natural disturbances include wildfir

The Telegraph

Australian bushfires: Nearly 100 dead in deadliest ever blaze

Australia's worst ever bushfires have left at least 100 people of homeless as blazes continue to rage amid fears the death-toll

news feature

Burning issues

Australia's cities impinge upon an ancient landscape shaped by fire. Carina Dennis talks to the researchers who are striving to protect lives and property, while retaining natural fire regimes

NEWS FEATURE

TUNDRA'S BURNING

Lightning and fires on the Arctic tundra seem to be on the rise. **Jane Qiu** meets the researchers learning from the scorched earth in Alaska.

Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

Anthony L. Westerling^{a,1}, Monica G. Turner^{b,1}, Erica A. H. Smithwick^c, William H. Romme^d, and Michael G. Ryan^e

News Focus

In a region already prone to water shortages, researchers now forecast that rising temperatures threaten the AmericanWest's hidden reservoir: mountain snow

As the West Goes Dry

news and views

Fire in the Earth System

David M. J. S. Bowman,^{1*} Jennifer K. Balch,^{2,3,4*}† Paulo Artaxo,⁵ William J. Bond,⁶ Jean M. Carlson,⁷ Mark A. Cochrane,⁸ Carla M. D'Antonio,⁹ Ruth S. DeFries,¹⁰ John C. Doyle,¹¹ Sandy P. Harrison,¹² Fay H. Johnston,¹³ Jon E. Keeley,^{14,15} Meg A. Krawchuk,¹⁶ Christian A. Kull,¹⁷ J. Brad Marston,¹⁶ Max A. Moritz,¹⁶ I. Colin Prentice,¹⁹ Christopher I. Roos,²⁰ Andrew C. Scott,²¹ Thomas W. Swetnam,²² Guido R. van der Werf,²³ Stephen J. Pyne²⁴

Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation

The wildfire factor

David Schimel and David Baker

Events such as wildfires, occurring on a tiny area of the globe, can have a huge impact on the global carbon cycle. This much is plain from investigation of the terrible fires that afflicted Indonesia five years ago.

Implementation of National Fire Plan treatments near the wildland–urban interface in the western United States

Tania Schoennagel^{a,1}, Cara R. Nelson^b, David M. Theobald^c, Gunnar C. Carnwath^b, and Teresa B. Chapman^a

BULLETINS FROM

Key Questions for Today's Class

- 1. What can we learn from the past?
- 2. How do we learn from the past?
- 3. What have we learned?

1. What can we learn from the past?

A. Context and perspective

How old is fire?

What do we need for fire?

1. Fuel

2. Oxygen

3. Ignition

What do we need for fire?

1. Fuel - Terrestrial vegetation

- 2. Oxygen Oxygen 13-35% (today = 21%)
- 3. Ignition Lightning, volcanoes, humans

How old is fire?

420 million13%400,00050,000-10,000

Historical precedence: (Bowman et al. 2009)

Context and perspective

Fire is a longstanding natural process, present throughout the evolution of the life and much of the planet

- "Fire is something that ecosystems do, not something that happens to them" - D. Falk
- "Natural phenomenon, human disaster"
 - My high school headmaster

Erickson Creek Fire, Interior Alaska, 2003

1. What can we learn from the past?

- A. Context and perspective
- B. How does fire respond to environmental change? Use the past as a natural experiment.

The past as a natural experiment

Multimillennial – millennial: glacial / interglacial periods

The past as a natural experiment

Millennial to centennial: glacial-Holocene transition

Data: Greenland Ice Sheet Project II (GISPII) http://www.ngdc.noaa.gov/paleo/icecore/icecore-varlist.html

The past as a natural experiment

Centennial-decadal: past 1000 years

Earth's history is filled with wellunderstood environmental variability, at multiple scales

Graphic: IPCC 2007:

http://www.ipcc.ch/publications and data/ar4/wg1/en/figure-6-10.html

Key Questions for Today's Class

- 1. What can we learn from the past?
 - a) Context and perspective
 - b) How fire responds to environmental change
- 2. How do we learn from the past?

Reconstructing the past Proxy – a stand in

Biological Proxies:

- tree rings
- pollen
- forams
- diatoms

Physical Proxies:

- charcoal
- isotopes
- glaciers
- boreholes

Important characteristics of all proxies:

Indirect measures

Precision varies

Availability varies

Images: http://www.ncdc.noaa.gov/paleo: http://web.utk.edu/~grissino/default.html: http://www.ipcc-wg2.org/index.html

Fire-scarred trees: cambium killed by fire on a *portion* of the tree; growth around scar used to determine date of fire

Fire scared ponderosa pine.

http://www.ncdc.noaa.gov/paleo/impd/firescar-photo.html

Fire-scarred trees:

Heyerdahl, E. K., L. B. Brubaker, and J. K. Agee. 2001. Spatial controls of historical fire regimes: A multiscale example from the interior west, USA. Ecology **82**:660-678.

Lake-sediment records

Lake-sediment records

Chickaree Lake, RMNP, CO:

Higuera et al. in prep.

Geomorphic Records

Severe burns

- smooth soil surfaces
- reduced infiltration
- greatly increased surface runoff

'Large firerelated events'

Meyer et al. 1992

Geomorphic Records

Fire-related sedimentation events

Pierce, Meyer, et al. 2006

Accuracy of fire history proxies:

Modified from Gavin et al. 2007

Key Questions for Today's Class

- 1. What can we learn from the past?
 - a) Context and perspective
 - b) How fire responds to environmental change
- 2. How do we learn from the past?
- 3. What have we learned from the past?

3. What have we learned from the past?

A. Climate has been a primary control of biomass burning, at multiple time scales

Millennial, Global

Fig. 1. Location of marine and terrestrial sites with charcoal records covering all or part of the Last Glacial. The sites are classified according to sampling resolution: high (>1 sample per ka) indicated by black circles, or low (<1 sample per ka) indicated by open circles (see Table 1).

Global biomass burning varies with global temperature

Quaternary Science Reviews 29 (2010) 2918-2930

After climate event

Before climate event

Millennial, Hemispheric

Wildfire responses to abrupt climate change in North America

J. R. Marlon^{a,1}, P. J. Bartlein^a, M. K. Walsh^a, S. P. Harrison^b, K. J. Brown^{c,d}, M. E. Edwards^{a,f}, P. E. Higuera^g, M. J. Power^h, R. S. Anderson^l, C. Briles^g, A. Brunelle^h, C. Carcaillet^j, M. Daniels^k, F. S. Hu^l, M. Lavole^m, C. Longⁿ, T. Minckley^o, P. J. H. Richard^p, A. C. Scott^q, D. S. Shafer^r, W. Tinner^s, C. E. Umbanhowar, Jr.^t, and C. Whitlock^g

Millennial, Regional

Yellowstone NP:

- 17,000 yr. fire history correlates with summer insolation (temp.)
- Fire frequencies vary with climate at millennial time scales

Higuera et al., 2011. Precipitation record: Gray et al. 2007; Tree-ring record: Romme and Despain 1989.

3. What have we learned from the past?

A. Climate has been a primary control of biomass burning, at multiple time scales

B. Humans and fire have always been tightly linked, but human impacts on large-scale fire regimes have varied

Humans and fire: (Bowman et al. 2009)

Years before present

Australian aboriginals and "Firestick farming" – a long-standing and increasingly-relevant question.

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

Late Quaternary fire regimes of Australasia

S.D. Mooney^{a,*}, S.P. Harrison^b, P.J. Bartlein^c, A.-L. Daniau^d, J. Stevenson^e, K.C. Brownlie^f, S. Buckman^f, M. Cupper^g, J. Luly^h, M. Black^a, E. Colhounⁱ, D. D'Costa^j, J. Dodson^k, S. Haberle^e, G.S. Hope^e, P. Kershaw¹, C. Kenyon^m, M. McKenzie¹, N. Williamsⁿ

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

Late Quaternary fire regimes of Australasia

Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement

David B. McWethy^{a,1}, Cathy Whitlock^a, Janet M. Wilmshurst^b, Matt S. McGlone^b, Mairie Fromont^b, Xun Li^c, Ann Dieffenbacher-Krall^d, William O. Hobbs^a, Sherilyn C. Fritz^a, and Edward R. Cook^d

 Initial burning period: widespread and coincident with human arrival

 Little evidence that climate change played a roll

Humans had immediate and dramatic impacts on forest communities, via fire.

McWethy et al. 2010

Climate and human influences on global biomass burning over the past two millennia

J. R. MARLON¹*, P. J. BARTLEIN¹, C. CARCAILLET², D. G. GAVIN¹, S. P. HARRISON³, P. E. HIGUERA⁴, F. JOOS⁵, M. J. POWER⁶ AND I. C. PRENTICE⁷

Climate dominant until ca. mid 19th century, then human impacts important, globally

Summary

- Fire has been a key process in the evolution of our planet, for millions of years
- Fire regimes have varied at multiple time scales, largely in response to direct and indirect impacts of climate change
- Human have existed with fire for millions of years, and impacts vary among ecosystems and time periods

Questions?

High severity 1988 fire in subalpine forest of Yellowstone National Park.

Some Resources

- NOAA Paleoclimate Web Page: http://www.ncdc.noaa.gov/paleo/
 - Information on all aspects of paleoclimate research and findings, including raw data.
- <u>IPCC 2007, Working Group 2 (Scientific Basis)</u>: http://www.ipccwg2.org/index.html
 - The Intergovernmental Panel of Climate Change's latest report.
- <u>The Ultimate Tree-ring Web Page (literally)</u>: http://web.utk.edu/~grissino/default.html
 - Everything you could want to know about tree-ring research.
- Brown University pollen viewer:

http://www.geo.brown.edu/georesearch/esh/QE/Research/VegDynam/VegA nima/Viewer31/WebViewer.html

Idaho 'large events' & Yellowstone National Park

Pierce et al. 2004