Pyrogeography: the where, when, and

why of fire on Earth

Philip Higuera, Assistant Professor, CNR, University of Idaho
REM 244 Guest Lecture, 2 Feb., 2012
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Outline for Today’s Class

1. What is pyrogeography?

2. What can you infer from the pattern of
fire?

3. Application — How will fire change with
climate?



What Is biogeography?

The study of life
across space and
through time: what
do we see, where,
and why?

Solifluction lobes in Alaska’s Brooks Rane Fire bound ry in Montana’s Bitter Root Mountains
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Fact:

AT A | Energy released
| o during a fire comes
| from stored energy
In chemical bonds

<t s | Implication:
' Fire at all scales is
regulated by rates
of plant growth

o 77 Y

University of Idaho Experiental Forest, 2009



What else does
fire need to
ex|st?




Pyrogeographic framework: “fire” as an organism

At multiple scales,

the presence of fire
depends upon the

coincidence of:

CONSUMABLE
RESOURCES:
productivity,
structure,
flammability

IGNITIONS:
natural and
anthropogenic

(1) Consumable
resources

ATMOSPHERIC
CONDITIONS:

(2) Atmospheric i
conditions weather

3 I - t 2 Figure 1: The pyrogeography framework includes vegetation resources to consume, atmospheric conditions, and
g n I I O n S ignition agents. Each of these components is spatially and temporally variable, as lustrated by arrows, and it is
their coincidence that results in fire activity. Variation in their coincidence generates different fire regime types (e.q,

frequent low-intensity surface fire versus infrequent high-intensity crown fire).
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Global patterns of fire — what can we infer?

Fires per year (sowman etal 2009)
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» 80-86% of global area burned: grassland and savannas, primarily in Africa,

Australia, and South Asia and South America
Krawchuk et al., 2009, PLoS ONE: http://www.plosone.org/article/info%3Ad0i%2F10.1371%2Fjournal.pone.0005102
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Global patterns of fire — what can we infer?

Net primary prOdUCtiVity (Bowman et al. 2009)
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Global Atmospheric Circulation
(GEOG 301, Meteorology)
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Earth’s major climates




Earth’s major biomes
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Climate
Classification
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With a neighbor or two, develop three
hypotheses linking these elements, on
a global scale:

= vegetation —fire
» climate — fire
= human —fire



Variable

Description and Units

Climate

Annual mean temperature

Mean diurnal range

Isothermality

Temperature seasonality

Maximum temperature of warmest month
Minimum temperature of coldest month
Temperature annual range

Mean temperature of wettest month
Mean temperature of driest month
Mean temperature of warmest month
Mean temperature of coldest month
Annual precipitation

Precipitation of wettest month
Precipitation of driest month
Precipitation seasonality

Precipitation of warmest month
Precipitation of coldest month
Vegetation

Net primary productivity (NPP)

Ignitions
Lightning flash density

Human footprint

Derived from monthly temperature and rainfall values
°C

mean of monthly (max temp—min temp), °C

mean diurnal range/temperature annual range (x100)
standard deviation of temperature (x100)

°C

°C

maximum temperature of warmest month — minimum temperature of coldest month, °C
°C

°C

°C

°C

mm/year

mm/day

mm/day

coefficient of variation

mm/day

mm/day

amount of solar energy converted to plant organic matter through photosynthesis (g C per
0.25 decimal degree cell/year).

flashes/km?/day

normalized gradient of human influence (0 to 100)

doi:10.1371/journal.pone.0005102.t001

Krawchuk et al., 2009, PLoS ONE: http://www.plosone.org/article/info%3Ad0i%2F10.1371%2Fjournal.pone.0005102
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Statistical model: Observed (top) and Predicted (bottom)

Fire counts

0
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Predicted based on (in order):
» Net primary productivity

= Mean temp. warmest month

= Annual precipitation

= Mean temp. wettest month

= Seasonality

= Mean diurnal range

» Precip. of driest month

Normalized relative probability of fire (nP) - Lightning flash denSity
T DEEEEEEEE 0 | » Mean temp. driest month
0.0 0.4 08 » Precip. of coldest month

Krawchuck et al. 2009 = Human footprint



Controls of fire across space and time

Lightning-Started Fires Jan Human- Started Fires Jan
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mage: Environmantal Changs Ressarch Group, Department of Geography, University of Cregon [hitps/geography ucregon edu'enchangs]

http://climate.uoregon.edu/fire/content/fire/index.htm#Monthly Incidence-and-Area_Data

Bartlein, P.J., Hostetler, S.W., Shafer, S.L., Holman, J.O. & Solomon, A.M. (2008) Temporal and spatial structure in a
daily wildfire-start data set from the western United States (1986-96). International Journal of Wildland Fire, 17, 8-17.



Controls of fire across space and time

1986-1996 Human Started Flres 1986-1996

Lightning- Started Fires

Data: USFS Rocky Min. Research Station [hitp//www fsfed.us/fire/fueiman/]
Image: Environmental Change Research Group, Department of Geography, University of Oregon [hitp.//gecgraphy uoregon.edu/envehange/]

http://climate.uoregon.edu/fire/content/fire/index.htm#Monthly Incidence-and-Area_Data

Bartlein, P.J., Hostetler, S.W., Shafer, S.L., Holman, J.O. & Solomon, A.M. (2008) Temporal and spatial structure in a
daily wildfire-start data set from the western United States (1986-96). International Journal of Wildland Fire, 17, 8-17.



4000 Lightning Western USA fires
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Bartlein, P.J., Hostetler, S.W., Shafer, S.L., Holman, J.O. & Solomon, A.M. (2008) Temporal and spatial structure in a
daily wildfire-start data set from the western United States (1986-96). International Journal of Wildland Fire, 17, 8-17.



Generalizations

1. What explains spatial and temporal
variability fire?



Pyrogeographic framework: “fire” as an organism

At multiple scales,

the presence of fire
depends upon the

coincidence of:

CONSUMABLE
RESOURCES:
productivity,
structure,
flammability

IGNITIONS:
natural and
anthropogenic

(1) Consumable
resources

ATMOSPHERIC
CONDITIONS:

(2) Atmospheric i
conditions weather

3 I - t 2 Figure 1: The pyrogeography framework includes vegetation resources to consume, atmospheric conditions, and
g n I I O n S ignition agents. Each of these components is spatially and temporally variable, as lustrated by arrows, and it is
their coincidence that results in fire activity. Variation in their coincidence generates different fire regime types (e.q,

frequent low-intensity surface fire versus infrequent high-intensity crown fire).
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Controls of fire across space and time

Global

Regional

\ vegetation /

Wildfire

SPACE

Microsite

Seconds Days Decades

TIME

Modified from Moritz et al. 2005, PNAS



Controls of fire across space and time

Fire Regime

vegetation

= Climate-limited:

Abundant fuels, but lacking atmospheric conditions
needed to dry fuels and promote fire ignition and
spread



Climate-limited fire regimes: boreal forest
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Controls of fire across space and time

Fire Regime

vegetation

= Climate-limited:

Abundant fuels, but lacking atmospheric conditions
needed to dry fuels and promote fire ignition and
spread

= Fuels-limited:

Atmospheric conditions needed to dry fuels and
promote fire ignition and spread are common, but
fire ignition and spread limited by a lack of
continuous fuel



Fuels Ilmlted flre reglmes ponderosa pme

i R i

e O e

Hessburg PF Agee J.K., and Franklin, J.F. 2005. Dry forests and Wlldland fires of the |nIand Northwest USA: Contrasting
the landscape ecology of the pre-settlement and modern eras. Forest Ecology and Management, 211, 117-139.




Climate- vs. Fuels-limited fire regimes
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Swetnam and Betancourt. 1997 before fire



Climate- vs. Fuels-limited fire regimes

Swetnam and Betancourt. 1997
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Statistical model: Observed (top) and Predicted (bottom)
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Climate Change and Global Fire

= A2 scenario, 2040-2069, FIREpp

= Fire will
Increase and
decrease,
depend|ng on decrease little/no change increase
precipitation .

Krawchuk et al., 2009, PLoS ONE: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005102
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Climate Change and Regional Fire

Western US: climate and fire, 2045-2055
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= Firerequires (1) consumable resources, (2)
atmospheric conditions (moisture deficit,
wind), and (3) ignitions

= Broadly, fire can be considered fuel- or
climate-limited

= When limitations change...fire activity
changes, as expected with ongoing and
future climate change




Questions?

s -

High severity 1988 fire in subalpine forest of Yellowstone National Park.
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