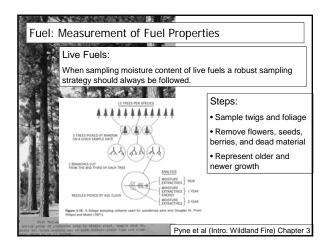
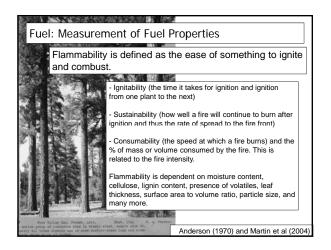
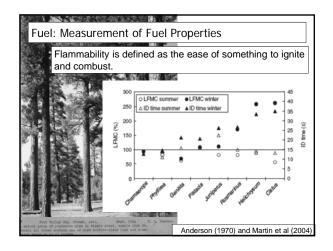
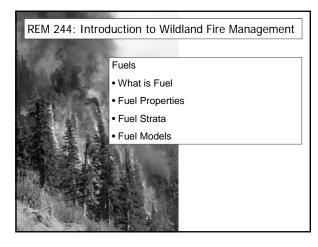


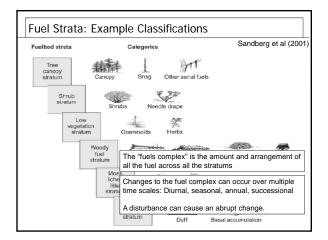
States and	
Fuel:	Measurement of Fuel Properties
1.0	1-10hr Dead Fuels (0-1"):
	Select samples that are representative in terms of decay
	Select fuels 1-2 " in size that are not connected to living trees (snags or in litter)
	Remove lichen or moss
10	100 hr Dead Fuels (1-3"):
	Select a sound unburied and unconnected branch that already has bark that comes off freely and collect ½" cookies
	1000 hr Dead Fuels (3" + duff):
	\bullet Select logs between 3-8" and collect $\%$ " cookies from at least 6" away from the end of the logs
meture group of pes	r Buy, Format, Aris. Bept. 1944 S. A. Pearson Marcon pitch is wingin stand, ample pitch DA. Maina ou or marco monitor-state. Days and Alder-
the search of the later	

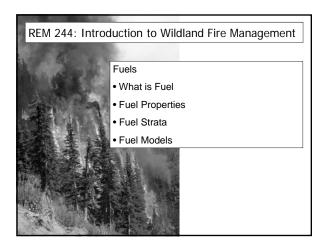




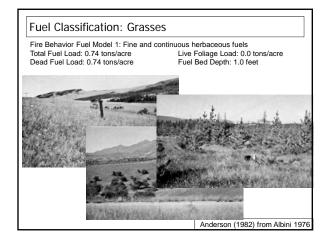


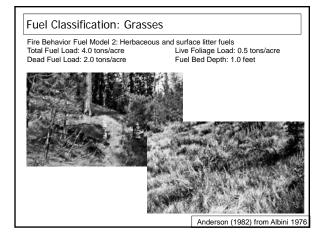


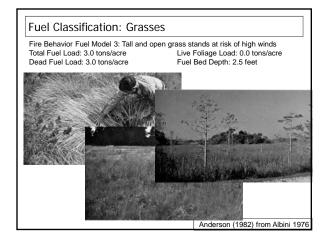




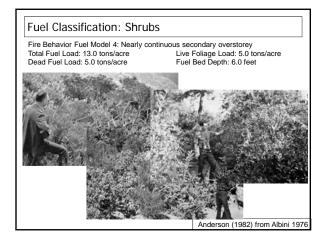
	The second se
Fuel Classification: Fu	el Models
stand is essential for fire be	quantity and distribution of fuel in a havior modeling. The challenge is the , abundance, and arrangement.
	Fuel models were developed to capture the broad generalities in the <u>surface fuels</u> as fire behavior rate of spread equations typically only use these fuels.
	Fuel models seek to generalize the surface fuels by the total fuel load, fuel bed depth, moisture content and the distribution of fuel across the different available sizes.
	Pyne et al (Intro. Wildland Fire) Chapter 3

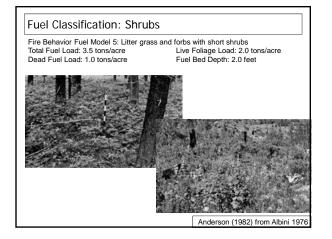


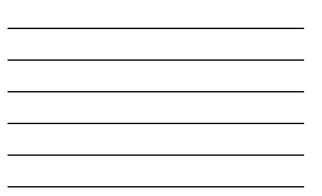

		8 17 C F 194	A. C. 1280	11. AN 12. A	and the				
	ng fuel model								d field
inv	entory. The 13	3 and 4	10 fuel	mode	els are	intero	change	able.	
Fuel		- Su	rface-area-to-	volume ratio g (tons/acre)	m*y	Fuel bed	Moisture of extinction	Characteristic surface area-to-	Packing
nodel	Typical fuel complex	1-h	10-h	100-h	Live	depth	dead fuels	volume ratio	ratio
						FI	Percent	Ft ⁻¹	
	Grass and grass-dominated								
1 2	Short grass (1 ft) Timber (grass and	3,500/0.74	-	-	-	1.0	12	3,500	0.00106
3	understory) Tall grass (2.5 ft)	3,000/2.00	109/1.00	30/0.50	1,500/0.50	1.0	15	2,784	.00575
3	Chaparral and shrub fields	1,500101	-	-	-	2.5		1,500	.00172
4	Chaparral (5 ft)	2,000/5.01	109/4.01	30/2.00	1,500/5.01	6.0	20	1,739	00383
5	Brush (2 ft)	2,000/1.00	109/0.50	-	1,500/2.00	2.0	20	1,683	.00252
6	Dormant brush, hard-								
	wood slash	1,750(1.50	109/2.50	30/2.00	1.500/0.37	2.5	25	1,564	.00345
1	Southern rough Timber litter	1,750(1.13	109/1.07	301.50	1,500/0.37	4.0	40	1,094	.00280
8	Closed timber litter	2,000/1.50	109/1.00	30/2.50	-	.2	30	1,889	.03594
9	Hardwood litter	2,500/2.92	109/0.41	30/0.15	-	.2	25	2,484	.02500
10	Timber (litter and understory)	2.000/3.01	109/2.00	30/5.01	1.500/2.00	1.0	25	1.764	01725
	Slash	2,000(3.01	109/2.00	30/5.01	1,500/2.00	1.0	-	1,194	.01/25
11	Light logging slash	1.500/1.50	109/4.51	30/5.51		1.0	15	1.182	.01653
12	Medium looping slash	1,500/4.01	109/14.03	30/16.53		2.3	20	1,162	.02156
13	Heavy logging slash	1,500/7.01	109/23.04	30/28.05	-	3.0	25	1,159	.02778

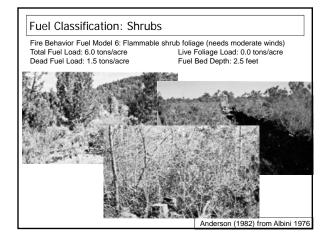

Fuel Classification:	The 13 and the 40
selection of a given mod	Is it is important to understand that the el should be driven by your visual ence!) of the fuels and how the fire spreads.
New York	
4	The reported fuel loading numbers (on the next few pages) are <u>only for a general understanding</u> and should not be used to decide on which fuel model to use.
	Using Fire Behavior Fuel Models is an Art with some science behind it!
	Anderson (1982) from Albini 1976

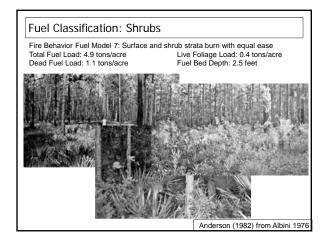


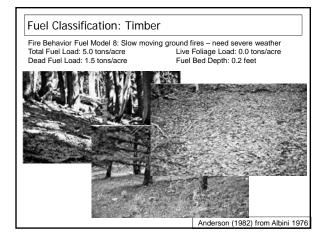


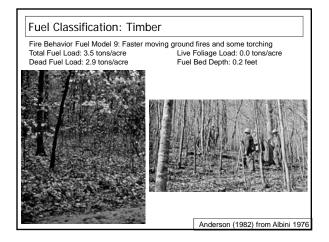


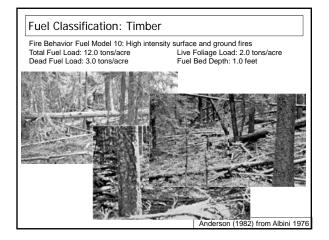


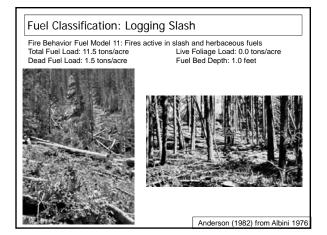


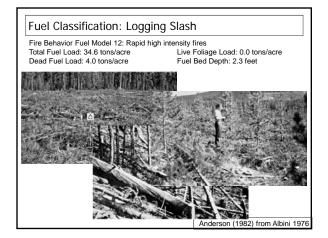


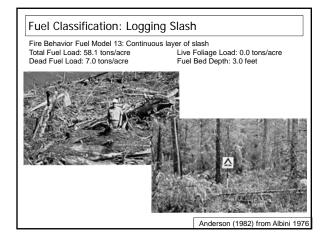


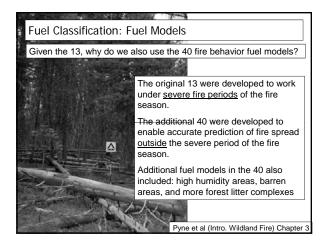


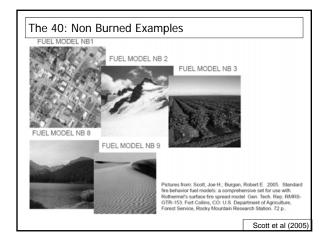


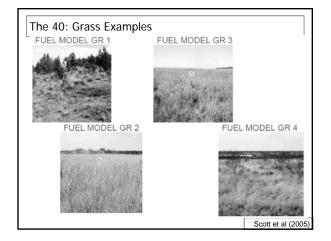












Nonbu Grass	rnable (NB) (GR) Shrub (GS)	• Timber • Timber	ught in a new na Understory (TU) Litter (TL) slowdown (SB)	aming convention
uel type	Fuel model number block	Used in original or new set	Reserved for future standard fuel models	Available for custom fuel models
	1-13	1-13		
	14-89			14-89
NB	90-99	91-93, 98-99*	94-95	90, 96-97
GR	100-119	101-109	110-112	100, 113-119
GS SH	120-139	121-124	125-130	120, 131-139
TU	140-159 160-179	141-149	150-152 166-170	140, 153-159 160, 171-179
TL	180-179	161-160	190-192	180, 171-179
	200-219	201-204	205-210	200, 211-219
\$B				200, 211-213

