## Homework 3

## MATH 472

1) Please email me your homework as a single pdf file.
2) Show your work clearly. Justify all your answers.
1. Find the pointwise limit of the sequence $\left\{f_{n}\right\}$ where

$$
f_{n}:[-1,1] \rightarrow \mathbb{R} \quad \text { with } \quad f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

2. For each natural number $n$ and each number $x \geq 2$, define

$$
f_{n}(x)=\frac{1}{1+x^{n}}
$$

Find the function $f:[2, \infty) \rightarrow \mathbb{R}$ to which the sequence $\left\{f_{n}:[2, \infty] \rightarrow\right.$ $\mathbb{R}\}$ converges pointwise. Prove that the convergence is uniform.
3. Consider the series $1+x+x^{2}+x^{3}+\ldots$. We know that this series converges pointwise to $\frac{1}{1-x}$ for $x \in(-1,1)$. Show that
(a) The convergence is not uniform on $(-1,1)$.
(b) The convergence is uniform on every closed and bounded interval $[-a, a]$ where $a<1$.
4. For each natural number $n$ and each number $x$ in $[0,1]$, define

$$
f_{n}(x)=n x e^{-n x^{2}}
$$

Prove that the sequence $\left\{f_{n}\right\}$ converges pointwise on the interval $[0,1]$ to the constant function 0 , but that the sequence of integrals $\left\{\int_{0}^{1} f_{n}\right\}$ does not converge to 0 . Does this contradict the theorem on uniform convergence of integrable functions? Why, or why not?

