Homework 5

MATH 472

1) Please email me your homework as a single pdf file.
2) Show your work clearly. Justify all your answers.
1. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. Prove that

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\frac{\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}}{4}
$$

(This identity is called the polarization identity.)
2. The points $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ in \mathbb{R}^{n} are said to be an orthonormal set if $\left\|\mathbf{u}_{i}\right\|=$ 1 for $1 \leq i \leq k$ and $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ if $i \neq j, 1 \leq i, j \leq k$. Suppose that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal set. For $\mathbf{u}=\alpha_{1} \mathbf{u}_{1}+\cdots+\alpha_{k} \mathbf{u}_{k}$, show that

$$
\|\mathbf{u}\|=\sqrt{\sum_{i=1}^{k} \alpha_{i}^{2}}
$$

3. Find the limit of the sequence $\left\{\left(\frac{(\sin n)^{n}}{n}, \frac{1}{n^{2}}\right)\right\}_{n=1}^{\infty}$ in \mathbb{R}^{2}.
4. Find the interior, i.e., $\operatorname{int}(S)$, of the set

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x<1, y^{2}+z^{2} \leq 1\right\}
$$

5. Is $S=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 1\right\}$ closed? Why, or why not?
6. Let m and n be natural numbers. Find a necessary condition on m and n such that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{n} y^{m}}{x^{2}+y^{2}}
$$

exists.
continued on next page...
7. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cc}
(x /|y|) \sqrt{x^{2}+y^{2}} & \text { if } y \neq 0 \\
0 & \text { if } y=0
\end{array}\right.
$$

Show that f is not continuous at $(0,0)$.
Hint: Consider the sequence of points $\left\{\left(\frac{1}{k}, \frac{1}{k^{2}}\right)\right\}$. Note that this sequence converges to $(0,0)$. Show that the sequence $\left\{f\left(\frac{1}{k}, \frac{1}{k^{2}}\right)\right\}$ does not converge to $f(0,0)$.

