Homework 6

MATH 472

1) Please email me your homework as a single pdf file.

- 2) Show your work clearly. Justify all your answers.
 - 1. (Approximation) Let a, b, and c be positive numbers. The set of points (x, y, z) in \mathbb{R}^3 such that

$$(x/a)^{2} + (y/b)^{2} - (z/c)^{2} = 1$$

is called a hyperboloid. Find the equation of the tangent plane to this hyperboloid at (x_0, y_0, z_0) with z_0 positive.

- 2. (Implicit Function Theorem) Check directly where we can solve the equation $F(x, y) = y^2 + y + 3x + 1 = 0$ for y in terms of x. Check that your answer agrees with the answer you expect from the Implicit Function Theorem. Compute dy/dx.
- 3. Recall the following theorem discussed in class.

Theorem 1 Let $f: D \to \mathbb{R}$ where D is a rectangle. The function f is integrable if and only if $\{P_n\}$ is a sequence of partitions of D such that $\lim_{n\to\infty} L(P_n, f) = \lim_{n\to\infty} U(P_n, f)$. Moreover,

$$\iint_D f = \lim_{n \to \infty} L(P_n, f) = \lim_{n \to \infty} U(P_n, f)$$

Let $D = [0, 1] \times [0, 1]$. Define

$$f(x,y) = \begin{cases} 5 & \text{if } (x,y) \in D \text{ and } x > 1/2\\ 1 & \text{if } (x,y) \in D \text{ and } x \le 1/2. \end{cases}$$

Using the theorem above show that f is integrable on D. Using the function f conclude that an integrable function need not be continuous.

4. (Fubini's Theorem) Let $D = [0, 1] \times [0, 1]$. Define

$$f(x,y) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 2y & \text{if } x \text{ is irrational.} \end{cases}$$

Show that $\int_0^1 \int_0^1 f(x, y) dy dx = 1.$

Let $\{P_{2k}\} = \{0, \frac{1}{2k}, \dots, \frac{k-1}{2k}, \frac{1}{2}, \frac{k+1}{2k}, \dots, \frac{2k-1}{2k}, 1\}$ be a partition of [0, 1]into 2k subintervals. Now show that $\iint_D f(x, y)$ does not exist. Try to do this by using the theorem stated above and considering the sequence of partitions of D created by $\{P_{2k}\}$. Then show that $U(P_{2k}, f) \to \frac{5}{4}$ and $L(P_{2k}, f) \to \frac{3}{4}$ as $k \to \infty$.

(This shows that Fubini's Theorem does not hold in this case.)

5. (Fubini's Theorem) Let $D = [0, 1] \times [0, 1]$. Define

$$f(x,y) = \begin{cases} \frac{(x-y)}{(x+y)^3} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Show that $\int_0^1 \int_0^1 \frac{(x-y)}{(x+y)^3} dx dy = -\frac{1}{2}$ and $\int_0^1 \int_0^1 \frac{(x-y)}{(x+y)^3} dy dx = \frac{1}{2}$. Use this result to conclude that f is not integrable on D. (Hint: Consider writing $\frac{(x-y)}{(x+y)^3} = \frac{2x}{(x+y)^3} - \frac{1}{(x+y)^2}$.)

6. Verify that if f(x, y) is continuous and [a, b] is an interval, then

$$\int_a^b \int_a^x f(x,y) \, dy \, dx = \int_a^b \int_y^b f(x,y) \, dx \, dy.$$

- 7. Let $f(x, y) = e^{y^2}$, where D is the region between the curves y = 2x, x = 0, and y = 2. Compute $\iint_D f$.
- 8. Reverse the order of integration and evaluate the resulting integral from

$$\int_0^2 \int_{x^2}^{2x} (2x+3) \, dy \, dx.$$