Homework 6

MATH 472

1) Please email me your homework as a single pdf file.
2) Show your work clearly. Justify all your answers.
1. (Approximation) Let a, b, and c be positive numbers. The set of points (x, y, z) in \mathbb{R}^{3} such that

$$
(x / a)^{2}+(y / b)^{2}-(z / c)^{2}=1
$$

is called a hyperboloid. Find the equation of the tangent plane to this hyperboloid at $\left(x_{0}, y_{0}, z_{0}\right)$ with z_{0} positive.
2. (Implicit Function Theorem) Check directly where we can solve the equation $F(x, y)=y^{2}+y+3 x+1=0$ for y in terms of x. Check that your answer agrees with the answer you expect from the Implicit Function Theorem. Compute $d y / d x$.
3. Recall the following theorem discussed in class.

Theorem 1 Let $f: D \rightarrow \mathbb{R}$ where D is a rectangle. The function f is integrable if and only if $\left\{P_{n}\right\}$ is a sequence of partitions of D such that $\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)$. Moreover,

$$
\iint_{D} f=\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)
$$

Let $D=[0,1] \times[0,1]$. Define

$$
f(x, y)= \begin{cases}5 & \text { if }(x, y) \in D \text { and } x>1 / 2 \\ 1 & \text { if }(x, y) \in D \text { and } x \leq 1 / 2\end{cases}
$$

Using the theorem above show that f is integrable on D. Using the function f conclude that an integrable function need not be continuous.
4. (Fubini's Theorem) Let $D=[0,1] \times[0,1]$. Define

$$
f(x, y)=\left\{\begin{array}{cc}
1 & \text { if } x \text { is rational } \\
2 y & \text { if } x \text { is irrational }
\end{array}\right.
$$

Show that $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=1$.
Let $\left\{P_{2 k}\right\}=\left\{0, \frac{1}{2 k}, \ldots, \frac{k-1}{2 k}, \frac{1}{2}, \frac{k+1}{2 k}, \ldots, \frac{2 k-1}{2 k}, 1\right\}$ be a partition of $[0,1]$ into $2 k$ subintervals. Now show that $\iint_{D} f(x, y)$ does not exist. Try to do this by using the theorem stated above and considering the sequence of partitions of D created by $\left\{P_{2 k}\right\}$. Then show that $U\left(P_{2 k}, f\right) \rightarrow \frac{5}{4}$ and $L\left(P_{2 k}, f\right) \rightarrow \frac{3}{4}$ as $k \rightarrow \infty$.
(This shows that Fubini's Theorem does not hold in this case.)
5. (Fubini's Theorem) Let $D=[0,1] \times[0,1]$. Define

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{(x-y)}{(x+y)^{3}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Show that $\int_{0}^{1} \int_{0}^{1} \frac{(x-y)}{(x+y)^{3}} d x d y=-\frac{1}{2}$ and $\int_{0}^{1} \int_{0}^{1} \frac{(x-y)}{(x+y)^{3}} d y d x=\frac{1}{2}$. Use this result to conclude that f is not integrable on D.
(Hint: Consider writing $\frac{(x-y)}{(x+y)^{3}}=\frac{2 x}{(x+y)^{3}}-\frac{1}{(x+y)^{2}}$.)
6. Verify that if $f(x, y)$ is continuous and $[a, b]$ is an interval, then

$$
\int_{a}^{b} \int_{a}^{x} f(x, y) d y d x=\int_{a}^{b} \int_{y}^{b} f(x, y) d x d y
$$

7. Let $f(x, y)=e^{y^{2}}$, where D is the region between the curves $y=2 x$, $x=0$, and $y=2$. Compute $\iint_{D} f$.
8. Reverse the order of integration and evaluate the resulting integral from

$$
\int_{0}^{2} \int_{x^{2}}^{2 x}(2 x+3) d y d x
$$

