Homework 4

MATH 420

Please email me your homework as a pdf file
All working must be shown clearly. You must justify all your answers.

1. Evaluate the integral

$$
\int_{C} z \mathrm{~d} z
$$

where C is the straight line from $z=i$ to $z=1$.
2. Evaluate

$$
\int_{C}(z-2) \bar{z} \mathrm{~d} z
$$

where C is the arc of the parabola $y^{2}=4 x$ with initial point $(1,-2)$ and terminal point $(1,2)$.
3. Let C be the straight line from $z=i$ to $z=1$. Show that

$$
\left|\int_{C} \frac{\mathrm{~d} z}{z^{4}}\right| \leq 4 \sqrt{2}
$$

without evaluating the integral.
(Observe that of all points on the line segment, the mid-point is the closest to the origin.)
4. Show that

$$
\int_{C} \frac{\mathrm{~d} z}{(z-a)^{n}}=\left\{\begin{array}{cl}
2 \pi i & \text { if } n=1 \\
0 & \text { if } n \neq 1
\end{array}\right.
$$

where C is a simple closed curve around the point a.
5. Integrate $\frac{e^{\pi z}}{z^{2}+1}$ in a counter-clockwise sense around the unit circle centered at
(a) $i,(\mathrm{~b})-i,(\mathrm{c}) 1,(\mathrm{~d})-1$
6. Evaluate

$$
\int_{C} \frac{z^{3}+2 z}{(z+i)^{3}} \mathrm{~d} z
$$

when C is a simple closed curve around $-i$.

