Homework 1

MATH 471

1) All work must be shown clearly. You must justify all your answers.
2) Problems 1. - 4. are practice problems on preliminary topics and will NOT be graded. However, you are strongly encouraged to try these. Your score on this homework will be based on problems 5. - 8.
(Students taking the course through Engineering Outreach may email me your solutions in a pdf file.)
1. (Optional) Let I denote the set of all positive integers, $I=\{1,2,3, \ldots\}$. If

$$
\begin{gathered}
f(n)=n+7, \quad(n \in I) \\
g(n)=2 n, \quad(n \in I)
\end{gathered}
$$

what is the range of $f \circ g$? What is the range of $g \circ f$?
2. (Optional) (One-to-one functions) Which of the following are 1-1 functions? Prove or disprove your answer.
(a) $f(x)=e^{x^{2}},(-\infty<x<\infty)$
(b) $f:\{x: x \neq 1\} \rightarrow \mathbb{R}, f(x)=\frac{x^{2}-1}{x-1}$
3. (Optional) Find a bijection between the intervals $[0,1]$ and $[a, b]$.
4. (Optional) (Onto functions) Let $A=B=(-\infty, \infty)$. Which of the following functions map A onto B ? Justify.
(a) $f(x)=3$
(b) $f(x)=x$
(c) $f(x)=e^{x}$
5. Find the least upper bound (l.u.b.) and greatest lower bound (g.l.b) of $\left\{\pi+1, \pi+\frac{1}{2}, \pi+\frac{1}{3}, \ldots\right\}$.
6. Let $S=\left\{x \in \mathbb{R}: x^{2}+x<3\right\}$. Find the supremum and infimum of the set S.
7. Find $N \in \mathbb{N}$ such that $\frac{1}{\sqrt{n+1}}<0.02$ for all $n \geq N$.
8. For each of the following sequences determine whether the sequence converges or diverges. Find the limit for convergent sequences. In each case, prove your conclusion.
(a) $\left\{a_{n}\right\}=\left\{\frac{1}{2 n-3}\right\}$
(b) $\left\{a_{n}\right\}=\left\{\frac{n}{n^{2}-2}\right\}$

