Homework 5

MATH 471

All work must be shown clearly. You must justify all your answers. (Students taking the course through Engineering Outreach may email me your solutions in a pdf file.)

1. Give an example of a function f that is continuous at $x=a$, not differentiable at $x=a$, but yet f attains a relative extremum at $x=a$.
2. Applications of the Mean Value Theorem:
(a) Let the function f be continuous on $[a, b]$, differentiable on (a, b), and $f^{\prime}(x)=0$ on (a, b). Using the Mean Value Theorem show that f must be a constant function on $[a, b]$.
(b) If functions f and g are continuous on $[a, b]$, differentiable on (a, b), and $f^{\prime}(x)=g^{\prime}(x)$ on (a, b), then there exists a real number k such that $f(x)=g(x)+k$ for all $x \in[a, b]$.
(c) Suppose that f is continuous and differentiable on $[6,15]$. Suppose $f(6)=-2$ and we know that $f^{\prime}(x) \leq 10$ for all $x \in[6,15]$. What is the largest possible value for $f(15)$?
3. Suppose that f is differentiable on some interval D. Prove that if f is Lipschitz then f^{\prime} is bounded.
(The converse of this result was proved in the lecture.)
