Homework 7

MATH 471

All work must be shown clearly. You must justify all your answers. (Students taking the course through Engineering Outreach may email me your solutions in a pdf file.)

1. If

$$
F(x)=\int_{0}^{x} \sqrt{t+t^{6}} \mathrm{~d} t \quad(x>0)
$$

find $F^{\prime}(2)$.
2. Calculate (by using the Fundamental Theorem or one of its corollaries):

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\int_{1}^{e^{x}} \ln t \mathrm{~d} t\right)
$$

3. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Define the function $H: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(x)=\int_{-x}^{x}[f(t)+f(-t)] \mathrm{d} t
$$

Find $H^{\prime \prime}(x)$.
4. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a continuous second derivative. If

$$
g(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) \mathrm{d} t
$$

then prove that $g^{\prime}(x)=f^{\prime}(x)$ for all x.

