Homework 8

MATH 471

This assignment will not be graded.

1. Find the nth Taylor polynomial for
(a) $f(x)=\ln (x)$, about $x_{0}=1$.
(b) $f(x)=\frac{1}{1-x}$, about $x_{0}=0$.
2. Compute the third Taylor polynomial for the function

$$
f(x)=\int_{0}^{x} \frac{1}{1+t^{2}} \mathrm{~d} t
$$

about $x_{0}=0$.
3. Suppose that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a second derivative and that

$$
f^{\prime \prime}(x)+f(x)=e^{-x} \text { for all } x
$$

$f(0)=0$, and $f^{\prime}(0)=2$. Find the fourth Taylor polynomial for f at $x_{0}=0$.
4. Prove that

$$
1+\frac{x}{3}-\frac{x^{2}}{9}<(1+x)^{1 / 3}<1+\frac{x}{3}
$$

for $x>0$.
5. Find the Taylor polynomial at $x=1$ for $f(x)=x^{5}-x^{3}+x$.

