Math 175 Section 4

Exam 2 Spring 2012

Name: _____

Show all your steps, use correct mathematical notation and simplify your answers to receive credit.

- 1. Given the sequence $\{a_n\}_{n=1}^{\infty} = \{1, 4, 16, 64, ...\}$
 - a) (2 pts) Find the next two terms of the sequence.
 - b) (4 pts) Find an explicit formula for the nth term of the sequence in terms of n.
 - c) (4 pts) Find a recurrence relation that generates the sequence using the first term and a relation between consecutive terms a_n and a_{n+1} .

2. (8 pts) Determine whether the following sequence converges or diverges by evaluating its limit.

$$\left\{a_n\right\} = \left\{ \left(1 + \frac{3}{n}\right)^{2n} \right\}$$

3. (8 pts) Use Simpson's rule with n=4 to approximate the following integral: $\int_{0}^{\pi} \sin 2x \, dx$

4. (8 pts each) Evaluate the following improper integrals, or determine that they diverge:

a)
$$\int_{0}^{\infty} xe^{-x} dx$$

b)
$$\int_{0}^{25} \frac{dx}{\sqrt{25 - x}}$$

5. (8 pts each) Evaluate the following integrals using any method. a) $\int \frac{dx}{\left(4-x^2\right)^{\frac{3}{2}}}$

a)
$$\int \frac{dx}{(4-x^2)^{\frac{3}{2}}}$$

b)
$$\int \frac{3}{x^3 - x^2 - 12x} dx$$

$$c) \int \frac{x^4 + 1}{x^3 + 9x} dx$$

$$d) \int \frac{2x}{\sqrt{3x+2}} dx$$

6. (8 pts) Solve the following initial value problem: $\frac{dy}{dt} = \sqrt{y} \sin t$, y(0) = 4

- 7. (2 pts each) Multiple choice questions. Circle the correct answer:
- a) To evaluate $\int \frac{x^2 + 1}{x 1} dx$, the first step is to:
 - A. divide the numerator by the denominator C. use the substitution u = x 1.
- B. perform a partial fraction decomposition
- b) Which of the following is an infinite sequence?
 - A. {1, 3, 5, 7, ... } B. {2, 4, 6, 8}

- C. 1+3+5+7+...
- c) The explicit formula $\{a_n\} = \left\{\frac{\sin\left(\frac{\pi n}{2}\right)}{n}\right\}$ for n=1,2,3,... generates the sequence:
 - A. {1, 0, -1, 0, 1, ...}
- B. $\{1,0 \frac{1}{3},0,\frac{1}{5},...\}$

- C. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ...\}$
- d) The following ordinary differential equation is separable: $t^2 \frac{dy}{dt} = \frac{t+4}{y^2}$
 - A. True

B. False

Total (out of 100 points):