NAME:

MATH 175: Extra-credit Assignment

Instructions:

- Print out this document
- ullet Solve the problems that are <u>circled</u>
- \bullet Submit your solutions in class on Thursday 12/11/14

Math 175 Section 4

Final Exam Spring 2012

Show all your steps, use correct mathematical notation and simplify your answers to receive credit.

1. (10 pts) Draw a right triangle and use it to simplify the expression: $tan(sin^{-1}(x/2))$

2. (10 pts) Differentiate with respect to x: $f(x) = x \arctan x$.

3. 0 pts each) Evaluate the following limits. Indicate indeterminate forms where appropriate.

a)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

b) $\lim_{x\to\infty} x^{1/x}$

- 4. (10 pts each) Evaluate the following integrals. Show all your work.
- a) $\int \tan^{10} x \sec^4 x \ dx$

$$\int \sqrt{100 - x^2} \, dx$$

c)
$$\int \frac{x-5}{x^2(x+1)} dx$$

5. (10 pts) Find a general solution to the differential equation: $\frac{dy}{dt} = 2y + 6$.

6. (10 pts) Evaluate the following improper integral or show that it diverges: $\int_{0}^{\infty} \frac{dx}{(x+2)^{3}}$

(7) (10 pts) Determine whether the following series converges or diverges. State the test used, apply the test showing all your work and state the result: $\sum_{k=1}^{\infty} \left(\frac{k}{3k+1}\right)^{2k}$

8. (10 pts) Find the radius and open interval of convergence of the following series: $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \cdot 3^n}$

9 (10 pts) Determine whether the following series converges absolutely, converges conditionally or diverges: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{3/2}}$

10. (a) (10 pts) Find the first 4 non-zero terms of the Taylor series for $f(x) = e^{-x}$ centered about a=0.

(b) (5 pts) Write the above series in sigma notation.

11. 15 pts) Find the length of the curve: $x = 3t^2 + 1$, $y = 4 + 2t^3$, $0 \le t \le 1$

12. (10 pts) Simplify the expression $\sinh x - \cosh x$.

(b) (10 pts) Find the area of the region enclosed by the above curve in the first quadrant.

(c) (10 pts) Find $\frac{dy}{dx}$ for the curve in part (a) when $\theta = \frac{\pi}{6}$.

Total (out of 200 points):