Additional Practice Problems/Review Qs for Midterm II

MATH 471

1. For two numbers m_{1} and m_{2} with $m_{1} \neq m_{2}$, let

$$
f(x)= \begin{cases}m_{1} x+4 & \text { if } x \leq 0 \\ m_{2} x+4 & \text { if } x \geq 0\end{cases}
$$

Prove that f is not differentiable at $x=0$.
2. Let the function f be differentiable at 0 . Prove that

$$
\lim _{x \rightarrow x_{0}} \frac{x f\left(x_{0}\right)-x_{0} f(x)}{x-x_{0}}=f\left(x_{0}\right)-x_{0} f^{\prime}\left(x_{0}\right)
$$

(Hint: Add and subtract $x_{0} f\left(x_{0}\right)$ in the numerator of the limit.)
3. Does the Mean Value Theorem apply to the function $g(x)=\sqrt{|x|}$ on $[-1,1]$? Justify your answer.
4. Prove that if f is differentiable at c and f has an extremum at c then $f^{\prime}(c)=0$.
(This has been done in the lecture.)
5. Give an example of a function that attains a relative extremum at $x=a$ but $f^{\prime}(a) \neq 0$.
6. Suppose that the bounded function $f:[a, b] \rightarrow \mathbb{R}$ has the property that for each rational x in the interval $[a, b], f(x)=0$. Prove that

$$
\underline{\int_{a}^{b}} f \leq 0 \leq \overline{\int_{a}^{b}} f
$$

7. Let

$$
f(x)=\left\{\begin{array}{lc}
x & \text { if the point } x \text { in }[0,1] \text { is rational } \\
0 & \text { if the point } x \text { in }[0,1] \text { is irrational. }
\end{array}\right.
$$

Prove that $\underline{\int_{0}^{1} f}=0$ and $\overline{\int_{0}^{1}} f \geq 1 / 2$.
8. Let

$$
f(x)= \begin{cases}x & \text { if } 2 \leq x \leq 3 \\ 0 & \text { if } 3<x \leq 4\end{cases}
$$

Prove that f is Riemann integrable.
9. By slightly modifying a proof done in the lecture prove that a monotonically decreasing function is integrable.

