Additional Practice Problems/Review Qs for Midterm II

MATH 471

1. For two numbers m_1 and m_2 with $m_1 \neq m_2$, let

$$f(x) = \begin{cases} m_1 x + 4 & \text{if } x \le 0\\ m_2 x + 4 & \text{if } x \ge 0. \end{cases}$$

Prove that f is not differentiable at x = 0.

2. Let the function f be differentiable at 0. Prove that

$$\lim_{x \to x_0} \frac{xf(x_0) - x_0 f(x)}{x - x_0} = f(x_0) - x_0 f'(x_0).$$

(Hint: Add and subtract $x_0 f(x_0)$ in the numerator of the limit.)

- 3. Does the Mean Value Theorem apply to the function $g(x) = \sqrt{|x|}$ on [-1, 1]? Justify your answer.
- 4. Prove that if f is differentiable at c and f has an extremum at c then f'(c) = 0. (This has been done in the lecture.)
- 5. Give an example of a function that attains a relative extremum at x = a but $f'(a) \neq 0$.
- 6. Suppose that the bounded function $f : [a, b] \to \mathbb{R}$ has the property that for each rational x in the interval [a, b], f(x) = 0. Prove that

$$\underline{\int_{a}^{b}} f \le 0 \le \overline{\int_{a}^{b}} f.$$

7. Let

 $f(x) = \begin{cases} x & \text{if the point } x \text{ in } [0,1] \text{ is rational,} \\ 0 & \text{if the point } x \text{ in } [0,1] \text{ is irrational.} \end{cases}$

Prove that $\underline{\int_0^1} f = 0$ and $\overline{\int_0^1} f \ge 1/2$.

8. Let

$$f(x) = \begin{cases} x & \text{if } 2 \le x \le 3\\ 0 & \text{if } 3 < x \le 4 \end{cases}$$

Prove that f is Riemann integrable.

9. By slightly modifying a proof done in the lecture prove that a monotonically decreasing function is integrable.