Review Topics for Final Exam

MATH 430, Fall 2014

The final exam is closed-book, closed-notes, and calculators are not allowed.

- Topics ¹:
 - 1.2 1.6: Vector Spaces
 - * Vector spaces and subspaces
 - * Linear combination; span of a vector space (spanning/generating sets)
 - * Linear dependence and linear independence
 - * Basis and dimension of vector spaces and subspaces
 - 2.1 2.5 : Linear Transformations
 - * Linear transformations on general vector spaces; finding the null space and range of a linear transformation; The Dimension Theorem
 - * One-to-one & onto linear transformations
 - * Finding the matrix of a linear transformation
 - * The vector space of linear transformations: addition, scalar multiplication, composition of linear transformations and their matrices
 - * Invertibility and isomorphism
 - * The change of coordinate matrix
 - 3.x : Solving systems of linear equations
 - -4.1 4.3: Determinants and properties
 - -5.1, 5.2: Eigenvalues, eigenvectors, and diagonalizability
 - 6.1: Inner product, norms, orthogonal, and orthonormal sets
 - 6.2: Gram-Schmidt process, orthogonal projections & complements
 - 6.3: Adjoint operator; Least Squares Approximation
 - 6.4: Normal and self-adjoint operators
 - 6.5: Unitary matrices and diagonalizing self-adjoint matrices, application of unitary transformations to conic sections (reducing bilinear forms), unitary operators and their properties
 - 6.7: The Singular Value Decomposition
 - 7.1 7.2: Jordan Canonical Form

 $^{^{1}}$ A strikethrough text indicates topics discussed in class but will not appear on the final. A <u>wayy-underlined</u> text indicates topics that will be needed for other topics but there will not be separate questions on these. A **bold-faced** text indicates topics that were covered after the 2nd midterm and should be treated with special emphasis.

- You are expected to be able to prove the following results:
 - 1. Let V be a vector space, $S_2 \subseteq V$, and $S_1 \subseteq S_2$. If S_1 is linearly dependent, then S_2 is also linearly dependent. (Week 2)
 - 2. $B = \{u_1, u_2, \dots, u_n\}$ is a basis of $V \Leftrightarrow$ every vector in V can be expressed uniquely in terms of elements in B. (Week 3)
 - 3. Let $T: V \to W$ be a linear transformation. Then N(T) and R(T) are subspaces of V and W, respectively. (Week 4)
 - 4. Let $T: V \to W$ be a linear transformation. Then T is one-to-one $\Leftrightarrow N(T) = {\vec{0}}$. (Week 4)
 - 5. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. Given n points $\{w_1, w_2, \ldots, w_n\}$ in W, there exists a unique linear transformation $T: V \to W$ such that for $i = 1, \ldots, n, T(v_i) = w_i$. (Week 5)
 - An orthogonal set of non-zero vectors is linearly independent. (done in class on 10/24)
 - 7. The adjoint T^* of a linear operator T is linear.(done in class on 10/31)
 - 8. Properties of normal operators (done in class on 11/5)
 - 9. Properties of self-adjoint operators (done in class on 11/7)
 - 10. T is unitary if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$. (done in class on 11/19)
 - 11. All eigenvalues of an unitary operator have absolute value 1. (done in class on 11/19)
- You are expected to be able to <u>apply</u> **all** theorems/results under the above sections that have been discussed in class.
- Suggestion: Go over the examples solved in class, the problems assigned for the HWs (solutions are posted on the course webpage), and the problems given on the review sheets for the midterms.