Review Topics for Final Exam

MATH 430, Fall 2014

The final exam is closed-book, closed-notes, and calculators are not allowed.

- Topics ${ }^{1}$:
- 1.2-1.6: Vector Spaces
* Vector spaces and subspaces
* Linear combination; span of a vector space (spanning/generating sets)
* Linear dependence and linear independence
* Basis and dimension of vector spaces and subspaces
- 2.1-2.5 : Linear Transformations
* Linear transformations on general vector spaces; finding the null space and range of a linear transformation; The Dimension Theorem
* One-to-one \& onto linear transformations
* Finding the matrix of a linear transformation
* The vector space of linear transformations: addition, scalar mut tiplication, composition of linear transformations and their matrices
* Invertibility and isømorphism
* The change of coordinate matrix
- 3.x : Solving systems of linear equations
- 4.1-4.3: Determinants and properties
- 5.1, 5.2: Eigenvalues, eigenvectors, and diagonalizability
- 6.1: Inner product, norms, orthogonal, and orthonormal sets
- 6.2: Gram-Schmidt process, orthogonal projections \& complements
- 6.3: Adjoint operator; Least Squares Approximation
- 6.4: Normal and self-adjoint operators
- 6.5: Unitary matrices and diagonalizing self-adjoint matrices, application of unitary transformations to conic sections (reducing bilinear forms), unitary operators and their properties
- 6.7: The Singular Value Decomposition
- 7.1-7.2: Jordan Canonical Form

[^0]- You are expected to be able to prove the following results:

1. Let V be a vector space, $S_{2} \subseteq V$, and $S_{1} \subseteq S_{2}$. If S_{1} is linearly dependent, then S_{2} is also linearly dependent. (Week 2)
2. $B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis of $V \Leftrightarrow$ every vector in V can be expressed uniquely in terms of elements in B. (Week 3)
3. Let $T: V \rightarrow W$ be a linear transformation. Then $N(T)$ and $R(T)$ are subspaces of V and W, respectively. (Week 4)
4. Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one \Leftrightarrow $N(T)=\{\overrightarrow{0}\}$. (Week 4)
5. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V. Given n points $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in W, there exists a unique linear transformation $T: V \rightarrow W$ such that for $i=1, \ldots, n, T\left(v_{i}\right)=w_{i}$. (Week 5)
6. An orthogonal set of non-zero vectors is linearly independent. (done in class on $10 / 24$)
7. The adjoint T^{*} of a linear operator T is linear.(done in class on $10 / 31$)
8. Properties of normal operators (done in class on 11/5)
9. Properties of self-adjoint operators (done in class on $11 / 7$)
10. T is unitary if and only if $\langle T(x), T(y)\rangle=\langle x, y\rangle$. (done in class on 11/19)
11. All eigenvalues of an unitary operator have absolute value 1. (done in class on 11/19)

- You are expected to be able to apply all theorems/results under the above sections that have been discussed in class.
- Suggestion: Go over the examples solved in class, the problems assigned for the HWs (solutions are posted on the course webpage), and the problems given on the review sheets for the midterms.

[^0]: ${ }^{1}$ A strikethrough text indicates topics discussed in class but will not appear on the final. A wavy-underlined text indicates topics that will be needed for other topics but there will not be separate questions on these. A bold-faced text indicates topics that were covered after the 2 nd midterm and should be treated with special emphasis.

