MATH 471 Review for Final

- The final is comprehensive and will be closed-book, closed notes.
- Theorems you should be able to state and prove:
 - 1. The following part of the Monotone Convergence Theorem: An increasing sequence that is bounded above is convergent. The limit is the supremum of the sequence. (see Lecture 6)
 - 2. A continuous function on a closed and bounded set is uniformly continuous. (see Lecture 14)
 - 3. The two Mean Value Theorems of Integration
 - 4. The two Fundamental Theorems of Calculus

• Topics, sub-topics, and important results:

- Convergence of sequences
 - * Supremum (sup or least upper bound or l.u.b.) & infimum (inf or greatest lower bound or g.l.b.) of a set
 - * Definition of convergence of a sequence and limit of a convergent sequence
 - * Operations on sequences: sum, difference, product, etc. of convergent sequences
 - * If a real number c satisfies |c| < 1 then $\lim_{n\to\infty} c^n = 0$ and if |c| > 1 then $\{c^n\}_{n=1}^{\infty}$ diverges.
 - * Monotone sequences: The Monotone Convergence Theorem
 - * Subsequences: Every subsequence of a convergent sequence converges to the same limit.
 - * Bounded sequences: Every convergent sequence is bounded. Converse is not true. However, every bounded sequence has a convergent subsequence (the Bolzano-Weierstrass Theorem).
 - * Sandwich or Squeeze Theorem
- Continuity
 - * Definition of continuity
 - * Sum, product, composition of continuous functions is continuous.
 - * Uniform continuity: Proving uniform continuity using the definition

Theorem : If $D \subseteq \mathbb{R}$ is a closed and bounded set and $f : D \to \mathbb{R}$ is continuous, then f is uniformly continuous.

- * Extreme and Intermediate Value Theorem and their applications: for example, using the IVT to show that a polynomial of odd degree has at least one root. (see Lecture 12)
- * Limit points of a set and limit of a function at a point. Connection to continuity.
- Differentiation
 - * Definition of differentiability at a point
 - * Differentiating sums, products, quotients, inverses and compositions
- (Riemann) Integration
 - * Finding the lower sum, upper sum, lower integral, upper integral of a function
 - * Archimedes Riemann Theorem
 - * Integrability of monotone and continuous functions
 - * Properties of integrals; additivity, linearity, etc.
- Fundamental Theorems of Calculus
- Approximation of functions by Taylor polynomials, Lagrange Remainder Theorem
- Be familiar with all the examples and counter-examples discussed in class. Be familiar with all the problems from Homeworks 1-8. Consider going over the solutions provided for each homework. Redo the practice problems that were provided before midterms I & II.