MATH 472

Guidelines for Exam 2

- Theorems/Lemmas/Propositions you are expected to be able to state and prove:
 - 1. $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ are orthogonal if and only if the Pythagorean identity holds.
 - 2. The Cauchy-Schwarz Inequality
 - 3. The triangle inequality for vectors in \mathbb{R}^n
 - 4. The intersection of a finite number of open sets is open. The union of an arbitrary collection of open sets is open.
 - 5. The following are equivalent:
 - (a) $f: D \to \mathbb{R}$ is continuous
 - (b) For every open set U in \mathbb{R} , $f^{-1}(U)$ is open in D
 - (In class, we proved only one direction and that is enough for the test.)

• Theorems/Lemmas/Propositions you are expected to be able to apply:

- 1. All of the above
- 2. All the results discussed for power series
- 3. Componentwise Convergence Criteria A sequence $\{\mathbf{u}_k\}$ in \mathbb{R}^n converges to \mathbf{u} if and only if $\{\mathbf{u}_k\}$ converges componentwise to \mathbf{u} .
- 4. The union of a finite number of closed sets is closed. The intersection of an arbitrary collection of closed sets is closed.
- 5. The following are equivalent: (1) $f = \mathbb{R}^{n+1}$

(a) $f: D \to \mathbb{R}$ is continuous at a point \mathbf{x}_0 (the ϵ - δ criterion holds at \mathbf{x}_0)

(b) For every convergent sequence $\{{\bf x_k}\}\to {\bf x_0}$ in $D,\,\{f({\bf x_k})\}$ converges to $f({\bf x_0})$

- 6. Clairaut's Theorem
- 7. Directional Derivative Theorem
- Must be able to clearly state all the definitions: For example: open ball, interior point, open sets, closed sets, accumulation point, limit and continuity at a point, continuously differentiable function, etc.
- Be familiar with all the examples discussed in class.
- Be familiar with all the problems from Homeworks 4, 5.
- Note: In the lectures, an arrow over a letter is used to indicate that the object is a vector. In print, a boldfaced letter is used to indicate a vector. Be mindful of this while reading questions.