Guidelines for Exam 2

- Theorems/Lemmas/Propositions you are expected to be able to state and prove:

1. $\mathbf{u} \in \mathbb{R}^{n}$ and $\mathbf{v} \in \mathbb{R}^{n}$ are orthogonal if and only if the Pythagorean identity holds.
2. The Cauchy-Schwarz Inequality

3 . The triangle inequality for vectors in \mathbb{R}^{n}
4. The intersection of a finite number of open sets is open.

The union of an arbitrary collection of open sets is open.
5. The following are equivalent:
(a) $f: D \rightarrow \mathbb{R}$ is continuous
(b) For every open set U in $\mathbb{R}, f^{-1}(U)$ is open in D
(In class, we proved only one direction and that is enough for the test.)

- Theorems/Lemmas/Propositions you are expected to be able to apply:

1. All of the above
2. All the results discussed for power series
3. Componentwise Convergence Criteria - A sequence $\left\{\mathbf{u}_{\mathbf{k}}\right\}$ in \mathbb{R}^{n} converges to \mathbf{u} if and only if $\left\{\mathbf{u}_{\mathbf{k}}\right\}$ converges componentwise to \mathbf{u}.
4. The union of a finite number of closed sets is closed.

The intersection of an arbitrary collection of closed sets is closed.
5. The following are equivalent:
(a) $f: D \rightarrow \mathbb{R}$ is continuous at a point $\mathbf{x}_{\mathbf{0}}$ (the $\epsilon-\delta$ criterion holds at $\mathbf{x}_{\mathbf{0}}$)
(b) For every convergent sequence $\left\{\mathbf{x}_{\mathbf{k}}\right\} \rightarrow \mathbf{x}_{\mathbf{0}}$ in $D,\left\{f\left(\mathbf{x}_{\mathbf{k}}\right)\right\}$ converges to $f\left(\mathbf{x}_{\mathbf{0}}\right)$
6. Clairaut's Theorem
7. Directional Derivative Theorem

- Must be able to clearly state all the definitions: For example: open ball, interior point, open sets, closed sets, accumulation point, limit and continuity at a point, continuously differentiable function, etc.
- Be familiar with all the examples discussed in class.
- Be familiar with all the problems from Homeworks 4, 5 .
- Note: In the lectures, an arrow over a letter is used to indicate that the object is a vector. In print, \uparrow boldfaced letter is used to indicate a vector. Be mindful of this while reading questions.

