MATH 472 Review sheet for final exam

• List of topics

- 1. Infinite Series
 - (a) Convergence Tests
 - (b) Absolute and Conditional Convergence
 - (c) Alternating Series
- 2. Sequences and Series of Functions
 - (a) Pointwise Convergence
 - (b) Uniform Convergence
 - i. Uniformly Convergent Sequences of Continuous Functions
 - ii. Uniformly Convergent Sequences of Integrable Functions
 - iii. Uniformly Convergent Sequences of Differentiable Functions
 - (c) Convergence of Series of Functions & the Weierstrass $M\operatorname{-Test}$
 - (d) Power Series¹
- 3. The *n*-dimensional space \mathbb{R}^n : dot product (inner product), norm, orthogonality, ...
- 4. Open Sets & closed Sets in \mathbb{R}^n , interior point: just definition (knowing what they mean) is enough
- 5. Limits and Continuity of Functions of Two Variables
- 6. Differentiation of Functions of Two Variables
 - (a) <u>Partial Derivatives</u>: just knowing how to calculate the partial derivatives of a function is enough
 - (b) Directional Derivative
 - (c) Tangent Plane Approximation
 - (d) Implicit Function Theorem
- 7. Double (Multiple) Integrals
 - (a) Partitions, Lower Sums, Upper Sums, Archimedes-Riemann Theorem, ...
 - (b) Iterated Integrals and Fubini's Theorem
 - (c) Line Integrals
 - i. Calculating line integrals, work done by a force field
 - ii. The Fundamental Theorem of Line Integrals
 - iii. Conservative Vectors Fields
 - (d) Green's Theorem
 - (e) Change of variables

¹a crossed out item indicates a topic taught in the course but not included in the final

• Results you are expected to be able to state and prove:

- 1. Theorem on uniform convergence of a sequence of continuous functions
- 2. Theorem on uniform convergence of a sequence of integrable functions
- 3. $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ are orthogonal if and only if the Pythagorean identity holds.
- 4. The Cauchy-Schwarz Inequality
- 5. The Fundamental Theorem of Line Integrals
- 6. Green's Theorem