MATH 420: Practice Problems

1. Describe the set of points given by $|z+i| \leq 3$.
2. Find $(\sqrt{3}+i)^{7}$. Give your answer in rectangular form (i.e. as $\left.x+i y\right)$. (Ans. $-64(\sqrt{3}+i))$
3. Find
(a) $(\sqrt{3}+i)^{1 / 2}$
(b) $8^{1 / 6}$

In each case indicate the principal value.
(Ans. $\pm \sqrt{2}, \pm \frac{1+i \sqrt{3}}{\sqrt{2}}, \pm \frac{1-i \sqrt{3}}{\sqrt{2}}$)
4. Show that
(a) $\log \left(i^{5}\right)=\log (i)=i \pi / 2$.
(b) $5 \log (i)=i 5 \pi / 2$

Hence $\log \left(i^{5}\right) \neq 5 \log (i)$.
(Here Log is the principal value of the \log function.)
5. Evaluate the integral

$$
\int_{C} \bar{z} \mathrm{~d} z
$$

when C is the right-hand half

$$
z=2 e^{i \theta} ; \quad-\pi / 2<\theta<\pi / 2
$$

of the circle $|z|=2$.
6. Using the Fundamental Theorem of Algebra prove that every polynomial equation $a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0$ has exactly n roots.
7. Using Gauss Mean Value Theorem, find

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}\left(\pi / 6+2 e^{i \theta}\right) \mathrm{d} \theta
$$

(Ans. 1/4)
8. Find the Laurent series about the indicated singularity. Identify the type of singularity:
(a) $(z-3) \sin \frac{1}{z+2} ; z=-2$ (Ans. essential singularity)
(c) $\frac{z-\sin z}{z^{3}} ; z=0$ (Ans. removeable singularity)
9. Evaluate

$$
\int_{C} \frac{\mathrm{~d} z}{z^{3}(z+4)}
$$

taken counterclockwise around the circle C (a) $|z|=2$, (b) $|z+2|=3$. (Ans. (a) $\frac{\pi i}{32}$, (b) 0)
10. Using the method of residues, evaluate

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} \mathrm{~d} x
$$

(Ans. $\frac{\pi}{2} e^{-2 \sqrt{3}}$)
11. Show that

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{1+a \sin \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}} \quad(-1<a<1)
$$

12. Find a harmonic conjugate of the harmonic function $u(x, y)=x^{3}-$ $3 x y^{2}$.
13. The transformation $w=e^{z}$ maps the horizonal strip $0<y<\pi$ onto the upper half plane $v>0$. The function

$$
h(u, v)=\operatorname{Re}\left(w^{2}\right)=u^{2}-v^{2}
$$

is harmonic in that half plane. With the aid of a theorem done in class show that the function $H(x, y)=e^{2 x} \cos 2 y$ is harmonic in the strip. Verify this result directly.
14. Practice all problems from HW 1-7
15. Be familiar with all examples solved in class

