Review Topics & Study Guide for Exam I MATH 430

The exam is closed-book, closed-notes, and calculators are not allowed.

- Chapter 1: Vector Spaces
 - Vector spaces and subspaces
 - Linear combination; span of a vector space (spanning/generating sets)
 - Linear dependence and linear independence
 - Basis and dimension of vector spaces and subspaces
- Chapter 2: Linear Transformations
 - Linear transformations on general vector spaces; finding the null space and range of a linear transformation; The Dimension Theorem
 - One-to-one & onto linear transformations
 - Finding the matrix of a linear transformation
 - The vector space of linear transformations: addition, scalar multiplication, composition of linear transformations and their matrices
 - Invertibility and isomorphism
 - The change of coordinate matrix
- You are expected to be able to apply **all** theorems/results discussed in class
- You are expected to be able to **prove** the following theorems:
 - 1. The Cancellation Law of Vector Addition
 - 2. $B = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n}$ is a basis of $V \Leftrightarrow$ every vector in V can be expressed uniquely in terms of elements in B.
 - 3. Let $T: V \to W$ be a linear transformation. Then N(T) and R(T) are subspaces of V and W, respectively.
 - 4. Let $T: V \to W$ be a linear transformation. Then T is one-to-one $\Leftrightarrow N(T) = {\vec{0}}.$
 - 5. If V and W are vector spaces of equal (finite) dimension, and let $T: V \to W$ be linear. Then the following are equivalent.
 - (a) T is one-to-one.
 - (b) T is onto.
 - (c) $\operatorname{rank}(T) = \dim(V)$.
- See separate file for additional practice problems. Go over the examples solved in class, in the book, and assigned for HWs 1-4.