Review Topics \& Study Guide for Exam I

MATH 430

The exam is closed-book, closed-notes, and calculators are not allowed.

- Chapter 1: Vector Spaces
- Vector spaces and subspaces
- Linear combination; span of a vector space (spanning/generating sets)
- Linear dependence and linear independence
- Basis and dimension of vector spaces and subspaces
- Chapter 2: Linear Transformations
- Linear transformations on general vector spaces; finding the null space and range of a linear transformation; The Dimension Theorem
- One-to-one \& onto linear transformations
- Finding the matrix of a linear transformation
- The vector space of linear transformations: addition, scalar multiplication, composition of linear transformations and their matrices
- Invertibility and isomorphism
- The change of coordinate matrix
- You are expected to be able to apply all theorems/results discussed in class
- You are expected to be able to prove the following theorems:

1. The Cancellation Law of Vector Addition
2. $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ is a basis of $V \Leftrightarrow$ every vector in V can be expressed uniquely in terms of elements in B.
3. Let $T: V \rightarrow W$ be a linear transformation. Then $N(T)$ and $R(T)$ are subspaces of V and W, respectively.
4. Let $T: V \rightarrow W$ be a linear transformation. Then T is one-to-one \Leftrightarrow $N(T)=\{\overrightarrow{0}\}$.
5. If V and W are vector spaces of equal (finite) dimension, and let $T: V \rightarrow W$ be linear. Then the following are equivalent.
(a) T is one-to-one.
(b) T is onto.
(c) $\operatorname{rank}(T)=\operatorname{dim}(V)$.

- See separate file for additional practice problems. Go over the examples solved in class, in the book, and assigned for HWs 1-4.

