Additional Practice Problems for Exam II

MATH 430

1. (Section 5.2) For each of the following matrices A, determine if A is diagonalizable. If diagonalizable, find an invertible matrix Q such that $Q^{-1} A Q=D$ and determine A^{n} for some arbitrary natural number n.
(a) $A=\left[\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4\end{array}\right]$ (Solution key: not diagonalizable, $\lambda=3$ has only one l.i. eigenvector)
(b) $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$ (Solution key: has two distinct eigenvalues)

NOTE: In the above question you should not compute Q^{-1} and multiply the product to verify that $Q^{-1} A Q$ is diagonal. If diagonalizable, this will be true by the theory. You just have to give the matrix Q and the corresponding diagonal matrix D.
2. (Section 5.4) Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

Use the Cayley Hamilton theorem to determine a) $A^{4}-2 A^{3}+5 A^{2}$, (b) $A^{6}-2 A^{5}+5 A^{4}+6 A+I$
(Solution key: (a) the 0 matrix, (b) find $6 A+I$)
3. (Section 6.2) Applying the Gram-Schmidt procedure find an orthonormal basis for the space $H=\operatorname{span}\left\{e^{-t / 2}, t e^{-t / 2}, t^{2} e^{-t / 2}\right\}$ using the inner product as $\langle f, g\rangle=\int_{0}^{\infty} f(t) g(t) d t$.
(You may use the following:
$\int_{0}^{\infty} e^{-t}=1, \int_{0}^{\infty} t e^{-t}=1, \int_{0}^{\infty} t^{2} e^{-t}=2, \int_{0}^{\infty} t^{3} e^{-t}=6, \int_{0}^{\infty} t^{4} e^{-t}=24$.)
(Ans. $\left\{e^{-t / 2},(t-1) e^{-t / 2}, \frac{t^{2}-4 t+2}{2} e^{-t / 2}\right\}$)
4. (Section 6.2) In each of the following find the orthogonal projection of the given vector on the given subspace W of the inner product space V.
(a) $V=\mathbb{R}^{3}, u=(2,1,3)$, and $W=\{(x, y, z): x+3 y-2 z=0\}$
(b) $V=P(\mathbb{R})$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x, h(x)=4+3 x-$ $2 x^{2}$, and $W=P_{1}(\mathbb{R})$. (Ans. : $x+\frac{13}{3}$)
5. (Section 6.3) Let x be the length of a spring and let y be the force applied to (exerted by) the spring. By Hooke's law, there is a linear relationship between the length x and the force y, i.e., $y=k x+d$, where k is called the spring constant. Use the following data to estimate the spring constant (x is in inches and y is in pounds).

Length (x)	3.5	4.0	4.5	5.0
Force (y)	1.0	2.2	2.8	4.3

(Ans. ~ 2.1) Note: In the test, you may be asked to give a clear setup of the solution but need not simplify the final answer. In particular, you won't need to calculate any matrix inverses.
6. (Section 6.4) For the given linear operator T defined on the inner product space V, determine whether T is normal, self adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T and list the corresponding eigenvalues.
$V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}c & d \\ a & b\end{array}\right]$.
(Ans. key: T is self-adjoint (so there exists an orthonormal set of eigenvectors), eigenvalues: $1,1,-1,-1$)
7. (Section 6.4) For the given linear operator T and the given vector space V determine whether T is normal or self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.
(a) $V=\mathbb{R}^{3}$ and T is defined by $T(a, b, c)=(-a+b, 5 b, 4 a-2 b+5 c)$.
(b) $V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T(A)=A^{t}$ where A^{t} is the transpose of A.
(In each case you can use the standard basis for the space V.)
8. (Section 6.5) For the following matrices A find an orthogonal matrix P and a diagonal matrix D such that $P^{*} A P=D$.

$$
\begin{gathered}
\text { (a) } A=\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \\
\text { Ans. } P=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right], D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 4
\end{array}\right] \\
\text { (b) } A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] . \\
\text { Ans. } P=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right], D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{gathered}
$$

9. State whether the following are true or false (with justification):
(a) A matrix $M \in M_{n \times n}$ has rank n if and only if $\operatorname{det}(M)=0$.
(b) For $A \in M_{n \times n}, \operatorname{det}\left(A^{\mathrm{t}}\right)=-\operatorname{det}(A)$, where $\operatorname{det}\left(A^{\mathrm{t}}\right)$ is the transpose of A.
(c) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.
(d) Any linear operator on an n-dimensional vector space that has fewer than n distinct eigenvalues is not diagonalizable.
(e) The adjoint of an unitary operator is unitary.
(f) Every real symmetric matrix is diagonalizable.
(g) Every self-adjoint operator is normal.
(h) Operators and their adjoints have the same eigenvectors.
