Homework 1

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized

 work.
Section 1.2

1. Let $V=\mathbb{R}^{2}$. Define addition and scalar multiplication as follows:

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) \oplus\left(b_{1}, b_{2}\right) & =\left(a_{1}+b_{1}, a_{2} b_{2}\right) \\
c \odot\left(a_{1}, a_{2}\right) & =\left(c a_{1}, a_{2}\right)
\end{aligned}
$$

Is V a vector space over \mathbb{R} ? Justify your answer.
2. Let $V=\mathbb{R}^{2}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{2}\right) \oplus\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right)
$$

and

$$
c \odot\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right) .
$$

Is V a vector space over \mathbb{R} ? Justify your answer.

Section 1.3

3. Determine whether the following are subspaces of \mathbb{R}^{3} under the operations of componentwise addition and scalar multiplication.
(a) $W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=3 a_{2}\right.$ and $\left.\left.a_{3}=-a_{2}\right)\right\}$
(b) $W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=a_{3}+2\right\}$
4. Is the set $W=\{f(x) \in P(\mathbb{F}): f(x)=0$ or $f(x)$ has degree $n)\}$ a subspace of $P(\mathbb{F})$ if $n \geq 1$? Justify your answer.
