Homework 2

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.
Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

Section 1.4

1. Determine whether $x^{3}-3 x+5$ can be written as a linear combination of the polynomials in $\left\{x^{3}+2 x^{2}-x+1, x^{3}+3 x^{2}-1\right\}$.
2. Show that the matrices

$$
\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\right\}
$$

generate $M_{2 \times 2}(\mathbb{F})$.

Section 1.5

3. Determine whether the following sets are linearly dependent or independent.
(a)

$$
\{(1,1,0),(2,0,1),(0,1,3)\} \in \mathbb{R}^{3}
$$

(b)

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
2 & 1 \\
-4 & -4
\end{array}\right)\right\} \in M_{2 \times 2}(\mathbb{R})
$$

4. Let M be a square upper triangular matrix with non-zero diagonal entries. Prove that the columns of M are linearly independent.

Section 1.6

5. The vectors $u_{1}=(1,1,1,1), u_{2}=(0,1,1,1), u_{3}=(0,0,1,1)$ and $u_{4}=(0,0,0,1)$ form a basis for \mathbb{R}^{4}. Find the unique representation of an arbitrary vector ($a_{1}, a_{2}, a_{3}, a_{4}$) in \mathbb{R}^{4} as a linear combination of u_{1}, u_{2}, u_{3}, and u_{4}.
