Homework 3

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized

 work.
Section 1.6

1. Determine whether the following set is a basis of \mathbb{R}^{3}.

$$
\{(1,-3,-2),(-3,1,3),(-2,-10,-2)\}
$$

2. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be distinct vectors of a vector space V. Show that if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for V then $\{\mathbf{u}+\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w}, \mathbf{w}\}$ is also a basis for V.
3. Find a basis for

$$
W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in \mathbb{R}^{5}: a_{2}=a_{3}=a_{4} \text { and } a_{1}+a_{5}=0\right\}
$$

What is the dimension of W ?
4. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$. Find a basis for W. What is the dimension of W.

Section 2.1

5. Show that the reflection operation (on \mathbb{R}^{2}), discussed in class is a linear transformation.
