Homework 4

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.
Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

Section 2.1

1. (a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, 2 a_{3}\right)$.
(b) $T: M_{2 \times 3}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{cc}
2 a_{11}-a_{12} & a_{13}+2 a_{12} \\
0 & 0
\end{array}\right) .
$$

In each of the above T :
(i) Show that T is a linear transformation.
(ii) Find a basis for $N(T)$.
(iii) Find a basis for $R(T)$.
(iv) Verify the Dimension Theorem.
(v) Determine whether T is one-to-one or onto.
2. In the following for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, show that T is not linear.
(a) $T\left(a_{1}, a_{2}\right)=\left(1, a_{2}\right)$
(b) $T\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{1}^{2}\right)$
3. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, $T(1,0)=(1,4)$, and $T(1,1)=$ $(2,5)$. What is $T(2,3)$? Is T one-to-one?
4. Recall, that $P(\mathbb{R})$ is the set of all polynomials with coefficients in \mathbb{R}.

Define

$$
T: P(\mathbb{R}) \rightarrow P(\mathbb{R}) \text { by } T(f(x))=\int_{0}^{x} f(t) d t
$$

Prove that T is linear and one-to-one but not onto.

Section 2.2

5. Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a+b)+(2 d) x+$ $b x^{2}$. Let $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be the basis for $M_{2 \times 2}(\mathbb{R})$ and $\left\{1, x, x^{2}\right\}$ be the basis for $P_{2}(\mathbb{R})$. Compute the matrix of T.
