Homework 5

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

Section 3.3

- 1. Determine which of the following systems has a solution. Give all solutions if one exists.
 - (a)

(b)

$$\begin{array}{rcrcrcr} x_1 + 2x_2 - x_3 &=& 1\\ 2x_1 + x_2 + 2x_3 &=& 3\\ x_1 - 4x_2 + 7x_3 &=& 4 \end{array}$$

- 2. In each system given below:
 - Solve the system $A\mathbf{x} = \mathbf{b}$.
 - Find the null space of A i.e., the solution of the homogeneous system $A\mathbf{x} = 0$.
 - Express the solution set of $A\mathbf{x} = \mathbf{b}$ as a sum of a particular solution of $A\mathbf{x} = \mathbf{b}$ and solutions of $A\mathbf{x} = 0$.
 - (a)

(b)

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \ b = \begin{bmatrix} 7 \\ -4 \end{bmatrix}.$$

$$x_1 + 2x_2 + x_3 + x_4 = 1$$

$$x_2 - x_3 + x_4 = 1$$

Section 4.2

3. Find the determinant of the following matrices. For convenience, in some cases you should use properties of determinants and consider the corresponding row reduced form.

a) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ b) $\begin{bmatrix} -1 & 3 & 2 \\ 4 & -8 & 1 \\ 2 & 2 & 5 \end{bmatrix}$ c	c) [- - -	1 -5 -9 -4	$-2 \\ 12 \\ 22 \\ 9$	$3 \\ -14 \\ -20 \\ -14$	$ \begin{array}{c} -12 \\ 19 \\ 31 \\ 15 \end{array} $	
---	------------------	---------------------	-----------------------	--------------------------	--	--

Section 4.3

- 4. Prove that an upper triangular $n \times n$ matrix is invertible if and only if all its diagonal entries are nonzero.
- 5. A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called orthogonal if $QQ^t = I$ where I is the $n \times n$ identity matrix. Prove that if Q is orthogonal, then $\det(Q) = \pm 1$. (Note that here Q^t is the transpose of the matrix Q.)