Homework 6

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

1. It can be shown that if A is an $n \times n$ matrix then its characteristic polynomial has the form

$$f(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0$$

(a) Using the above fact, prove that $f(0) = a_0 = \det(A)$.

(b) Hence deduce that det(A) = product of the eigenvalues of A. (Hint: If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A then we also have $f(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$.)

2. For the given linear operator $T: V \to V$, test for diagonalizability, and if T is diagonalizable, find an ordered basis β for V such that $[T]_{\beta}$ is diagonal.

a)
$$V = \mathbb{R}^3$$
 and $T(a, b, c) = (-4a + 3b - 6c, 6a - 7b + 12c, 6a - 6b + 11c)$

b)
$$V = P_3(\mathbb{R})$$
 and $T(f(x)) = xf'(x) + f''(x) - f(2)$

c) $V = P_3(\mathbb{R})$ and T(f(x)) = f'(x) + f''(x). (Note: To find eigenvalues of T use the standard basis of \mathbb{R}^3 or P_3 .)

3. For each of the following matrices A, test for diagonalizability. If A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$, then find an expression for A^n .

(a)	1	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	(b)	1	1	0]		3	1	1	
				0	1	2	(c)	2	4	2	
		ა]		0	0	3		-1	-1	1	

4. Using the Cayley-Hamilton Theorem, evaluate $2A^2 - 9A - 10I$ where I is the 2×2 identity matrix and A is the 2×2 matrix given in 3 (a) above.