Homework 6

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

1. It can be shown that if A is an $n \times n$ matrix then its characteristic polynomial has the form

$$
f(\lambda)=(-1)^{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}
$$

(a) Using the above fact, prove that $f(0)=a_{0}=\operatorname{det}(A)$.
(b) Hence deduce that $\operatorname{det}(A)=$ product of the eigenvalues of A.
(Hint: If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A then we also have $\left.f(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right).\right)$
2. For the given linear operator $T: V \rightarrow V$, test for diagonalizability, and if T is diagonalizable, find an ordered basis β for V such that $[T]_{\beta}$ is diagonal.
a) $V=\mathbb{R}^{3}$ and $T(a, b, c)=(-4 a+3 b-6 c, 6 a-7 b+12 c, 6 a-6 b+11 c)$
b) $V=P_{3}(\mathbb{R})$ and $T(f(x))=x f^{\prime}(x)+f^{\prime \prime}(x)-f(2)$
c) $V=P_{3}(\mathbb{R})$ and $T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$.
(Note: To find eigenvalues of T use the standard basis of \mathbb{R}^{3} or P_{3}.)
3. For each of the following matrices A, test for diagonalizability. If A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$, then find an expression for A^{n}.
(a) $\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right]$
4. Using the Cayley-Hamilton Theorem, evaluate $2 A^{2}-9 A-10 I$ where I is the 2×2 identity matrix and A is the 2×2 matrix given in 3 (a) above.

