Homework 7

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

Section 6.1

- 1. In C([0,1]) (the space of continuous functions defined on [0,1]), define inner product by $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Let f(t) = t and $g(t) = e^t$. Compute $\langle f,g \rangle$, ||f||, ||g|| and ||f+g||. Verify both the Cauchy-Schwarz and the triangle inequality.
- 2. (Pythagorean Theorem) Let V be an inner product space, and suppose that \mathbf{x} and \mathbf{y} are orthogonal vectors in V. Prove that $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.
- 3. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthogonal set in V, and let a_1, a_2, \dots, a_k be scalars. Prove that

$$\left\|\sum_{i=1}^{k} a_i \mathbf{v}_i\right\|^2 = \sum_{i=1}^{k} |a_i|^2 \|\mathbf{v}_i\|^2.$$

Section 6.2

- 4. In the following, apply the Gram-Schmidt process to the given subset S of the inner product space V to obtain an orthonormal basis β for span(S). Then express the given vector h as a linear combination of the vectors in β .
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 0, 1), (0, 1, 1), (1, 3, 3)\}$, and h = (1, 1, 2). (The inner product for \mathbb{R}^3 is the usual dot product.)
 - (b) $V = P_2(\mathbb{R})$ with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. $S = \{1, x, x^2\}$ and h = 1 + x.