Homework 7

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized

 work.
Section 6.1

1. In $C([0,1])$ (the space of continuous functions defined on $[0,1]$), define inner product by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) \mathrm{d} t$. Let $f(t)=t$ and $g(t)=e^{t}$. Compute $\langle f, g\rangle,\|f\|,\|g\|$ and $\|f+g\|$. Verify both the Cauchy-Schwarz and the triangle inequality.
2. (Pythagorean Theorem) Let V be an inner product space, and suppose that \mathbf{x} and \mathbf{y} are orthogonal vectors in V. Prove that $\|\mathbf{x}+\mathbf{y}\|^{2}=$ $\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$.
3. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal set in V, and let $a_{1}, a_{2}, \ldots, a_{k}$ be scalars. Prove that

$$
\left\|\sum_{i=1}^{k} a_{i} \mathbf{v}_{i}\right\|^{2}=\sum_{i=1}^{k}\left|a_{i}\right|^{2}\left\|\mathbf{v}_{i}\right\|^{2}
$$

Section 6.2

4. In the following, apply the Gram-Schmidt process to the given subset S of the inner product space V to obtain an orthonormal basis β for $\operatorname{span}(S)$. Then express the given vector h as a linear combination of the vectors in β.
(a) $V=\mathbb{R}^{3}$, $S=\{(1,0,1),(0,1,1),(1,3,3)\}$, and $h=(1,1,2)$. (The inner product for \mathbb{R}^{3} is the usual dot product.)
(b) $V=P_{2}(\mathbb{R})$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t . S=\left\{1, x, x^{2}\right\}$ and $h=1+x$.
