Homework 8

MATH 430

All work must be shown clearly for full credit. You must justify all your answers.

Points will be deducted for incomplete/incorrect/haphazard/unorganized work.

Section 6.2

1. Let $V=C([0,1])$, the space of continuous functions defined on $[0,1]$. Consider the inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Let W be the subspace spanned by the linearly independent set $\{t, \sqrt{t}\}$.
(a) Find an orthonormal basis for W.
(b) Let $h(t)=t^{2}$. Use the orthonormal basis obtained in (a) to find the best (closest) approximation of h in W.

Section 6.3

2. For each of the following inner product spaces V and linear operators T on V, find T^{*} and evaluate $T^{*}(x)$ for the given vector.
(a) $V=\mathbb{R}^{2}, T(a, b)=(2 a+b, a-3 b), x=(3,5)$
(b) $V=P_{1}(\mathbb{R})$ with $\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t, T(x)=x^{\prime}(t)+3 x(t), x(t)=$ $4-2 t$.
(Note: You need to use an orthonormal basis for V in each case. In (b) you can start with the standard basis $\{1, t\}$ of P_{1} and orthonormalize it using the Gram-Schmidt process.)
3. Let V be an inner product space, and let $y, z \in V$. Define $T: V \rightarrow V$ by $T(x)=\langle x, y\rangle z$ for all $x \in V$. Prove that T is linear. Find an explicit expression for T^{*}.
4. Consider the data set

$$
\left\{\left(t_{i}, y_{i}\right)\right\}=\{(-3,9),(-2,6),(0,2),(1,1)\} .
$$

Use the least squares approximation method to find the best fits with both a linear function and a quadratic function. Compute the error in both cases.

