
Additional Practice Problems for Midterm I

MATH 472

1. Prove that the series
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diverges to ∞.

(Consider limk→∞
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.)

2. Is the following statement true or false? Explain.
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converges.

3. Test the convergence of the following series
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4. Determine whether the following series converges conditionally, con-
verges absolutely or diverges:∑
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5. Find the pointwise limit of the sequence {fn} where fn : [0,∞]→ R is
given by

fn(x) =
xn

1 + x2n
.

6. Suppose that {fn} with fn : [2, 5] → R is defined by fn(x) = xn

1+x2n .

Find limn→∞
∫ 5

2
fn(x) dx

7. For each n ∈ N, consider the functions fn : [−1, 1] → R defined by
fn(x) = xe−nx

2
.

(a) Show that {fn} converges uniformly to a differentiable function.

(b) Show that the limit as n → ∞ and the differentiation process
cannot be interchanged.
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