Additional Practice Problems for Midterm I

MATH 472

1. Prove that the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ diverges to ∞.
(Consider $\lim _{k \rightarrow \infty} \frac{k}{k+1}$.)
2. Is the following statement true or false? Explain.

The series $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{2^{k}}\right)$ converges.
3. Test the convergence of the following series
(a) $\sum_{k=1}^{\infty} \frac{5}{3^{k}+2}$
(b) $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$
4. Determine whether the following series converges conditionally, converges absolutely or diverges: $\sum_{k} \frac{(-1)^{k}}{\sqrt{k(k+1)}}$
5. Find the pointwise limit of the sequence $\left\{f_{n}\right\}$ where $f_{n}:[0, \infty] \rightarrow \mathbb{R}$ is given by

$$
f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}
$$

6. Suppose that $\left\{f_{n}\right\}$ with $f_{n}:[2,5] \rightarrow \mathbb{R}$ is defined by $f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}$. Find $\lim _{n \rightarrow \infty} \int_{2}^{5} f_{n}(x) \mathrm{d} x$
7. For each $n \in \mathbb{N}$, consider the functions $f_{n}:[-1,1] \rightarrow \mathbb{R}$ defined by $f_{n}(x)=x e^{-n x^{2}}$.
(a) Show that $\left\{f_{n}\right\}$ converges uniformly to a differentiable function.
(b) Show that the limit as $n \rightarrow \infty$ and the differentiation process cannot be interchanged.
