MATH 472: Practice Problems

Problems on line integrals, conservative vector fields, Green's Theorem

1. Evaluate the following line integrals

(a) $\int_C (x + \sqrt{y}) \, \mathrm{d}s$, where C is parametrized by $\gamma(t) = (2t, t^2)$, for $0 \le t \le 1$.

(b) $\int_C xy \, ds$, where C is the parabola $y = x^2$ between the points (0,0) and (2,4).

(c) $\int_C x^3 y^2 ds$, where C is the quarter of the unit circle in the first quadrant.

- 2. Find the work done by the force field $\overrightarrow{F}(x,y) = (x^2y, xy^2)$ in moving an object along the line segment from the point (0,0) to the point (2,3).
- 3. Determine whether or not the given vector field is conservative in the region D. If it is, find the potential function f.
 - (a) $\vec{F}(x,y) = (y^2, 2xy), D = \mathbb{R}^2.$ (b) $\vec{F}(x,y) = (3y + 4xy^2, 3x + 3x^2y), D = \mathbb{R}^2.$
- 4. Use Green's Theorem to calculate the area of the astroid given by $\overrightarrow{r}(t) = (\cos^3 t, \sin^3 t)$ with $t \in [0, 2\pi]$.
- 5. (Change of variables) If D is the trapezoid with vertices (0, 1), (0, 2), (2, 0), and (1, 0), find

$$\iint_D \sin \frac{y-x}{y+x}.$$

- 6. Suppose that C is a positively oriented boundary of an annular region between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$. If $\overrightarrow{F}(x, y) = (-xy, x)$ is a vector field, calculate the line integral of \overrightarrow{F} on C. (Try to use Green's Theorem)
- 7. Determine whether the given vector field is conservative and if so find its potential:

$$\overrightarrow{F}(x,y) = (3x^2y - \cos x + 4, x^3 - e^y)$$

(Ans. conservative, $f(x, y) = x^3y - e^y + 4x - \sin x$)

8. Compute $\int_C \overrightarrow{F} d\overrightarrow{r}$ where $\overrightarrow{F}(x,y) = (x,x+y)$ and C is the unit circle $x^2 + y^2 = 1$ traced in the counterclockwise direction. (Try this both ways: using and not using Green's Theorem.) (Ans. π)

Additional problems

- 1. Prove that the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ diverges to ∞ . (Consider $\lim_{k\to\infty} \frac{k}{k+1}$.)
- 2. Determine whether the given series converges or diverges (a) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ (Converges to 1. Find the partial sum s_n and take its limit.) (b) $\sum_{k=1}^{\infty} \ln \frac{1}{k}$ (Diverges)
- 3. Find the sum of $3 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ (Ans. 5)
- 4. Test the convergence of the following series

 - (a) $\sum_{k=1}^{\infty} \frac{5}{3^k+2}$ (Converges. Compare with $\sum \frac{1}{3^k}$) (b) $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ (Diverges. Compare with $\sum \frac{1}{k}$) (c) $\sum_{k=1}^{\infty} ke^{-k^2}$ (Converges. Integral Test.)
- 5. Determine whether the following series converges conditionally, converges absolutely or diverges (a) $\sum_{k} \frac{k}{(-2)^{k-1}}$ (Ans. Converges by the alternating series test, converges absolutely by the ratio test) (b) $\sum_{k} \frac{(-1)^{k}}{k \ln k}$ (Ans. Converges conditionally)
- 6. Find the pointwise limit, if it exists, of the given sequence $\{f_n\}$ (a) $f_n: [-1,1] \to \mathbb{R}; f_n(x) = \frac{nx}{1+n^2x^2}$ (Ans. f(x) = 0) (b) $f_n : [0, \infty) \to \mathbb{R}; f_n(x) = \frac{x^n}{1+x^{2n}}$ (Ans. $f(1) = \frac{1}{2}, f(x) = 0$ when $x \neq 1$.) (c) $f_n: [0,1] \to \mathbb{R}; f_n(x) = nxe^{-nx^2}$ (Ans.f(x) = 0)
- 7. Prove that for $f_n: [0,\infty) \to \mathbb{R}$
 - (a) $f_n(x) = x^n e^{-nx}$ converges uniformly. (b) $f_n = \frac{nx}{1+n^2x^2}$ converges only pointwise

- 8. Suppose that $\{f_n\}$ with $f_n : [2,5] \to \mathbb{R}$ is defined by $f_n(x) = \frac{x^n}{1+x^{2n}}$. Find $\lim_{n\to\infty} \int_2^5 f_n(x) \, \mathrm{d}x$.
- 9. Prove that $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ is continuous on [0, 1]. (Use the Weierstrass *M*-Test to first show uniform convergence of the series.)
- 10. For a natural number n and reals a_1, \ldots, a_n , verify that

$$|a_1 + \dots + a_n| \le \sqrt{n}\sqrt{a_1^2 + \dots + a_n^2}.$$

(Use Cauchy-Schwarz Inequality)

11. Relevant problems given in HWs 1 - 6, problems discussed in the lectures, problems handed out for practice before Midterms I & II