MATH 472: Practice Problems

Problems on line integrals, conservative vector fields, Green's Theorem

1. Evaluate the following line integrals
(a) $\int_{C}(x+\sqrt{y}) \mathrm{d} s$, where C is parametrized by $\gamma(t)=\left(2 t, t^{2}\right)$, for $0 \leq t \leq 1$.
(b) $\int_{C} x y \mathrm{~d} s$, where C is the parabola $y=x^{2}$ between the points $(0,0)$ and $(2,4)$.
(c) $\int_{C} x^{3} y^{2} \mathrm{~d} s$, where C is the quarter of the unit circle in the first quadrant.
2. Find the work done by the force field $\vec{F}(x, y)=\left(x^{2} y, x y^{2}\right)$ in moving an object along the line segment from the point $(0,0)$ to the point $(2,3)$.
3. Determine whether or not the given vector field is conservative in the region D. If it is, find the potential function f.
(a) $\vec{F}(x, y)=\left(y^{2}, 2 x y\right), D=\mathbb{R}^{2}$.
(b) $\vec{F}(x, y)=\left(3 y+4 x y^{2}, 3 x+3 x^{2} y\right), D=\mathbb{R}^{2}$.
4. Use Green's Theorem to calculate the area of the astroid given by $\vec{r}(t)=\left(\cos ^{3} t, \sin ^{3} t\right)$ with $t \in[0,2 \pi]$.
5. (Change of variables) If D is the trapezoid with vertices $(0,1),(0,2),(2,0)$, and (1,0), find

$$
\iint_{D} \sin \frac{y-x}{y+x} .
$$

6. Suppose that C is a positively oriented boundary of an annular region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$. If $\vec{F}(x, y)=(-x y, x)$ is a vector field, calculate the line integral of \vec{F} on C.
(Try to use Green's Theorem)
7. Determine whether the given vector field is conservative and if so find its potential:

$$
\vec{F}(x, y)=\left(3 x^{2} y-\cos x+4, x^{3}-e^{y}\right)
$$

(Ans. conservative, $f(x, y)=x^{3} y-e^{y}+4 x-\sin x$)
8. Compute $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=(x, x+y)$ and C is the unit circle $x^{2}+y^{2}=1$ traced in the counterclockwise direction. (Try this both ways: using and not using Green's Theorem.)
(Ans. π)

Additional problems

1. Prove that the series $\sum_{k=1}^{\infty} \frac{k}{k+1}$ diverges to ∞.
(Consider $\lim _{k \rightarrow \infty} \frac{k}{k+1}$.)
2. Determine whether the given series converges or diverges
(a) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ (Converges to 1 . Find the partial sum s_{n} and take its limit.)
(b) $\sum_{k=1}^{\infty} \ln \frac{1}{k}$ (Diverges)
3. Find the sum of $3+1+\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots$
(Ans. 5)
4. Test the convergence of the following series
(a) $\sum_{k=1}^{\infty} \frac{5}{3^{k}+2}$ (Converges. Compare with $\sum \frac{1}{3^{k}}$)
(b) $\sum_{k=1}^{\infty} \frac{1}{2+\sqrt{k}}$ (Diverges. Compare with $\sum \frac{1}{k}$)
(c) $\sum_{k=1}^{\infty} k e^{-k^{2}}$ (Converegs. Integral Test.)
5. Determine whether the following series converges conditionally, converges absolutely or diverges
(a) $\sum_{k} \frac{k}{(-2)^{k-1}}$ (Ans. Converges by the alternating series test, converges absolutely by the ratio test)
(b) $\sum_{k} \frac{(-1)^{k}}{k \ln k}$ (Ans. Converges conditionally)
6. Find the pointwise limit, if it exists, of the given sequence $\left\{f_{n}\right\}$
(a) $f_{n}:[-1,1] \rightarrow \mathbb{R} ; f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$
(Ans. $f(x)=0$)
(b) $f_{n}:[0, \infty) \rightarrow \mathbb{R} ; f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}$
(Ans. $f(1)=\frac{1}{2}, f(x)=0$ when $x \neq 1$.)
(c) $f_{n}:[0,1] \rightarrow \mathbb{R} ; f_{n}(x)=n x e^{-n x^{2}}$
(Ans. $f(x)=0$)
7. Prove that for $f_{n}:[0, \infty) \rightarrow \mathbb{R}$
(a) $f_{n}(x)=x^{n} e^{-n x}$ converges uniformly.
(b) $f_{n}=\frac{n x}{1+n^{2} x^{2}}$ converges only pointwise
8. Suppose that $\left\{f_{n}\right\}$ with $f_{n}:[2,5] \rightarrow \mathbb{R}$ is defined by $f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}$. Find $\lim _{n \rightarrow \infty} \int_{2}^{5} f_{n}(x) \mathrm{d} x$.
9. Prove that $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ is continuous on $[0,1]$. (Use the Weierstrass M-Test to first show uniform convergence of the series.)
10. For a natural number n and reals a_{1}, \ldots, a_{n}, verify that

$$
\left|a_{1}+\cdots+a_{n}\right| \leq \sqrt{n} \sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} .
$$

(Use Cauchy-Schwarz Inequality)
11. Relevant problems given in HWs 1-6, problems discussed in the lectures, problems handed out for practice before Midterms I \& II

