Review Topics for Midterm I

MATH 420

• Basics

- algebraic operations, complex conjugate, modulus and argument of a complex number \boldsymbol{z}
- Polar form of a complex number z, de Moivre's Formula, finding **powers** and **roots** of z
- Functions of a complex variable: f(z) = u(x, y) + iv(x, y)
 - Limits (including limits at infinity)
 - Continuity
 - Analyticity: necessary conditions for analyticity and the Cauchy-Riemann equations, sufficient conditions for analyticity
- Elementary functions: Euler's formula, $w = e^z$, $z = \log(w)$, $\sin z$, $\cos z$, principal branch of the logarithm, other multi-valued functions and principal branches of such functions
- Be familiar with all the HW problems and examples solved in class

• Useful trigonometric figures:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

 $\sin \frac{\pi}{6} = \frac{1}{2}, \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$
 $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \cos \frac{\pi}{3} = \frac{1}{2}$
 $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$
 $\sin \frac{\pi}{2} = 1, \cos \frac{\pi}{2} = 0$
 $\sin \frac{3\pi}{2} = -1, \cos \frac{3\pi}{2} = 0$
 $\sin 0 = \sin 2\pi = 0, \cos 0 = \cos 2\pi = 1$
 $\sin \pi = 0, \cos \pi = -1$