Practice Problems for Midterm I

MATH 420

1. Describe the set determined by the given condition: (a) $|z-4 i| \geq 4$ (b) $|z-1+i|=1$
2. Find
(a) $\overline{i z}$ (b) the modulus of $-5-i \sqrt{11}$
3. Write in polar form
(a) $i(1-i \sqrt{3}) \quad$ (b) $2(1+i \sqrt{3})$
4. Use de Moivre's Theorem to show that

$$
\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta
$$

5. Find $(-1-i)^{4}$
6. Find all values of
(a) $(-8 i)^{1 / 3}$
(b) $(-1)^{1 / 3}$
7. Find $\lim _{z \rightarrow \infty} \frac{1-z}{z^{2}+1}$
$(\mathrm{Ans}=0)$
8. Find $\lim _{z \rightarrow i} z^{2}+2 z$
(Ans. $-1+2 i$)
9. Is the function $f(z)=\frac{1}{z-i}$ continuous at $z=i$? Why, or why not? (Ans. Not continuous at $z=i$ because $f(i)$ does not exist)
10. Check the C-R equations for $f(z)=x^{3}+i(1-y)^{3}$ and find the set where the function is not analytic.
(Ans. Everywhere except the point $x=0, y=1$ or, everywhere except the number i.)
11. Show that the function $\log z$ is not continuous along the positive real axis (refer to Lecture 12).
12. Using Euler's formula write $e^{i \pi / 2}$ in polar form and find its value. (Ans. $e^{i \pi / 2}=\cos \pi / 2+i \sin \pi / 2=i$)
13. Show that $e^{2+3 \pi i}=-e^{2}$
14. Find the logarithm of $-1-\sqrt{3} i$ and give the principal value.
(Ans. $\log (-1-\sqrt{3} i)=\log 2+i(4 \pi / 3+2 n \pi)$ and $\log (-1-\sqrt{3} i)=$ $\log 2+i 4 \pi / 3)$
