Practice Problems for Midterm II

MATH 420

1. Evaluate

$$
\int_{C} \frac{z+2}{3 z}
$$

C is the sector of the circle $|z|=3$ from $\theta=0$ to $\theta=\frac{\pi}{3}$ i.e. counterclockwise.
2. Evaluate the integrals of the following functions about the given curve C :
(a) $f(z)=\frac{z^{2}}{z-3} ; C=$ the unit circle $|z|=1$
(Ans. $\int_{C} f(z)=0$ by Cauchy's Integral Theorem since f is analytic everywhere on and within C.)
(b) $f(z)=z e^{-z} ; C=$ the unit circle $|z|=1$
(Ans. $\int_{C} f(z)=0$ by Cauchy's Integral Theorem since f is analytic everywhere on and within C.)
3. Let C denote the positively oriented (traveling counter-clockwise) square whose sides lie along the line $x= \pm 2$ and $y= \pm 2$. Evaluate the integrals:
(a) $\int_{C} \frac{e^{-z} \mathrm{~d} z}{z-\left(\frac{\pi i}{2}\right)}$ (Ans. 2π)
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} \mathrm{d} z$ (Ans. $\pi i / 4$)
4. Let C denote the circle $|z-i|=2$ positively oriented. Evaluate $\int_{C} \frac{1}{z^{2}+4} \mathrm{~d} z$
(Ans. $\pi / 2$)
5. Evaluate $\int_{C} \frac{e^{-z}}{z^{2}} \mathrm{~d} z ; C$ is the unit circle $|z|=1$ (Ans. $-2 \pi i$)
6. Find a series expansion about $z=0$ of $\frac{1}{1-z^{4}}$; find the region of convergence or the region where the series is valid.
7. Find a series expansion about $z=1$ of $\frac{1}{z^{2}-1}$; find the region where this is valid.
8. (Singular points) Find all the singularities of the given functions and classify them:
(a) $\frac{e^{z}-1}{z}$
(b) $z e^{\frac{1}{z}}$ (Ans. $z=0$ is an essential singularity)
(c) $\frac{1}{z^{2}} \cos 2 z$
(d) $\frac{1}{z^{2}(z-3)^{2}}$ (Ans. $z=0$ and $z=3$, both are poles of order 2)

Useful series expansions:
(a) $e^{z}=1+z+\frac{z}{2!}+\frac{z^{3}}{5!}+\cdots$
(b) $\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots$
(c) $\cos z=1-\frac{z^{2}}{2!}+\frac{z^{i}}{4!}-\cdots$
(d) $\frac{1}{1-z}=1+z+z^{2}+z^{3}+\ldots ;$ for $|z|<1$

