Practice Problems for Midterm II

MATH 420

1. Evaluate

$$\int_C \frac{z+2}{3z},$$

C is the sector of the circle |z| = 3 from $\theta = 0$ to $\theta = \frac{\pi}{3}$ i.e. counterclockwise.

- 2. Evaluate the integrals of the following functions about the given curve C:
 - (a) $f(z) = \frac{z^2}{z-3}$; C = the unit circle|z| = 1(Ans. $\int_C f(z) = 0$ by Cauchy's Integral Theorem since f is analytic everywhere on and within C.)
 - (b) $f(z) = ze^{-z}$; C = the unit circle|z| = 1(Ans. $\int_C f(z) = 0$ by Cauchy's Integral Theorem since f is analytic everywhere on and within C.)
- 3. Let C denote the positively oriented (traveling counter-clockwise) square whose sides lie along the line $x = \pm 2$ and $y = \pm 2$. Evaluate the integrals:

(a)
$$\int_C \frac{e^{-z} dz}{z - (\frac{\pi i}{2})}$$
 (Ans. 2π)
(b)
$$\int_C \frac{\cos z}{z(z^2+8)} dz$$
 (Ans. $\pi i/4$)

- 4. Let C denote the circle |z i| = 2 positively oriented. Evaluate $\int_C \frac{1}{z^2+4} dz$ (Ans. $\pi/2$)
- 5. Evaluate $\int_C \frac{e^{-z}}{z^2} dz$; C is the unit circle |z| = 1 (Ans. $-2\pi i$)
- 6. Find a series expansion about z = 0 of $\frac{1}{1-z^4}$; find the region of convergence or the region where the series is valid.
- 7. Find a series expansion about z = 1 of $\frac{1}{z^2-1}$; find the region where this is valid.

- 8. (Singular points) Find all the singularities of the given functions and
 - (b) $ze^{\frac{z}{z}}$ (Ans. z = 0 is an essential singularity) (c) $\frac{1}{z^2(z-3)^2}$ (Ans. z = 0 and z = 3, both are poles of order 2)

Useful series expansions:

(a)
$$e^{z} = 1 + z + \frac{z}{2!} + \frac{z}{3!} + \cdots$$

(b) $\sin z = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \cdots$
(c) $\cos z = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \cdots$
(d) $\frac{1}{1-z} = 1 + z + z^{2} + z^{3} + \dots$; for $|z| < 1$