MATH 420

COMPLEX VARIABLES

SESSION no. 4
(1) Universityofldano Recall:

$$
\begin{aligned}
& z=x+i y \\
& =(r)(\cos \theta+i \sin \theta) \\
& \text { polar form } \\
& =(r(\cos \phi+i \sin \phi) \\
& \theta=\phi+2 k \pi ; k= \pm 1, \pm 2,
\end{aligned}
$$

If $0 \leqslant \theta<2 \pi$ the θ : principal argument
(2) University of Idaho -
$\operatorname{Arg}(z): 0 \leq \theta<2 \pi$ otherwise $\theta: \arg (z)$.
For all integers $k=\cdots,-1,0,1, \ldots$

$$
z^{k}=r^{k}(\cos k \theta+i \sin k \theta)
$$

where

$$
z=r(\cos \theta+i \sin \theta) .
$$

(3)

Ex. $z=\sqrt{3}+i$ Find z^{7}.
$\sqrt{3}+i \sim(\sqrt{3}, 1) \in$ |st quadrant

$$
\theta=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}
$$

$$
|z|=\sqrt{3+1}=2
$$

$$
z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
$$

$$
\operatorname{Arg}(z)=\pi / 6, \arg (z)=\frac{\pi}{6} \pm 2 k \pi
$$

$$
z^{\text {Univesityofldaho }}=2^{7}\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)
$$

(polar form of z^{7})

$$
\begin{aligned}
& \frac{7 \pi}{6}=\pi+\frac{\pi}{6} \quad \\
& \cos \frac{7 \pi}{6}=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2} \\
& \sin 71 / 6=-\sin \pi / 6=-1 / 2 \\
& Z^{7}=2^{7}\left(-\frac{\sqrt{3}}{2}+i\left(-\frac{1}{2}\right)\right)=-2^{6}(\sqrt{3}+i) \\
& \text { rect. forme }
\end{aligned}
$$

(3) Finding the roots of a
complex no.
Given $a \in \mathbb{C}$, find z sit.

$$
\begin{aligned}
& z^{n}=a ; n \geqslant 2 ; \text { integer } \\
& z=a^{1 / n} \\
& a=|a|(\cos \theta+i \sin \theta) \\
& z=|a|^{1 / n}\left(\cos \frac{\theta}{n}+i \sin \frac{\theta}{n}\right)
\end{aligned}
$$

(b)

$$
\left[\begin{array}{l}
a=|a|(\cos (\theta+2 \pi)+i \sin (\theta+2 \pi) \\
z=a^{1 / n}=|a|^{1 / n}\left(\cos \frac{\theta+2 \pi}{n n}+i \sin \frac{\theta+2 \pi}{n}\right) \\
a=|a|(\cos (\theta+2 k \pi)+i \sin (\theta+2 k \pi)) \\
z=|a|^{1 / n}\left[\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\theta+2 k \pi}{n}\right)\right] \\
k=0,1, \cdots, n-1
\end{array}\right.
$$

$$
\begin{aligned}
& (7)
\end{aligned}\left[\begin{array}{l}
k=0: \arg =\theta / n \\
k=1: \arg =\frac{\theta+2 \pi}{n} \\
\vdots \\
k=n-1: \\
k=n: \quad \arg =\frac{\theta+2(n-1) \pi}{n} \\
k=\frac{\theta+2 n \pi}{n}=\frac{\theta}{n}+2 \pi
\end{array}\right.
$$

(8) Ex. Roots of unity (1). Find z sit. $z=1^{1 / n}$

$$
1=1(\cos 2 k \pi+\underset{i \sin 2 k \pi)}{k=0, \pm 1, \pm 2, \ldots}
$$

nth root of 1 :

$$
z=i^{1 / n}\left(\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}\right)
$$

(9)

$$
\left[\begin{array}{rl}
n=2 ; & k=0,1 \\
k=0: & \cos 0+i \sin 0=1 \\
k=1: & \cos \frac{2 \pi}{2}+i \sin \frac{2 \pi}{2} \\
& =\cos \pi+i \sin \pi=-1 \\
n=3 ; & k=0,1,2 \\
k=0: & \cos 0+i \sin 0=1
\end{array}\right.
$$

(10)

$$
\left[\begin{array}{l}
\begin{array}{l}
\text { Universityofldano } \frac{n=3}{2 \pi} \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3} \\
\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
k=2: \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3} \\
\omega^{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2} \\
\left\{1, \omega, \omega^{2}\right\}
\end{array}
\end{array}\right.
$$

(1) Univerityoflang 3 rd roots of 1

(12) Universityofldaho \qquad In general, the n roots of unity are the vertices of a regular n-polygon inscribed inside a circle of radius 1 .

