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Lecture Outline

• Explainability in ML

▪ Concerns by stakeholders and for deployment

▪ Transparency

▪ Transparent versus opaque models

• Type of explanations

▪ Pixel-level explanations

o Vanilla BackProp, Guided BackProp, Occlusion maps, CAM, Grad-CAM, Guided Grad-CAM, 
Integrated gradients, Layer-wise relevancy propagation

▪ Feature-level explanations

o LIME, Shapley values, SHAP

▪ Concept-level explanations

o TCAV, ACE

▪ Instance-level explanations 

o Prototypes and criticisms, counterfactual explanations
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Explainability in ML

• Several terms are used interchangeably for explainability in ML

▪ Explainable ML

▪ Explainable AI (with the acronym XAI)

▪ Interpretable ML, or interpretable AI

• ML systems are increasingly being deployed across a wide range of applications

▪ Beside achieving high accuracy, we need to also have good understanding of the 
internal working of ML models

▪ Current best performing models (DL-based models) are the least transparent

• Challenges: 

▪ Do we understand the decisions suggested by ML models?

▪ Can we trust ML models if their decision-making process is not fully transparent? 

Explainability in ML
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What is Interpretability?

• Interpretability is the ability to explain or to present in understandable terms to 
a human

• There is no clear answers in psychology to:

▪ What constitutes an explanation?

▪ What makes some explanations better than the others?

▪ When are explanations sought?

• Explainable ML refers to methods and techniques in the application of ML 
systems such that the results of the solution can be understood by human 
experts and users

▪ It opposes the concept of black-box models in ML, where it is not obvious why the 
model arrived at a specific decision

Explainability in ML



6

CS 487/587, Spring 2024

What is Interpretability?

• Black-box AI versus explainable AI

Explainability in ML

Picture from: KDD 2019 Tutorial, Explainable AI in Industry
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Explainability in ML

• Explainability in ML can help to determine the most important features used by 
a model when making a prediction

▪ E.g., the shown saliency map indicates the regions in the image that contributed the 
most to the classification by the model as “pool table”

Explainability in ML

Picture from: Samek (2019) Meta-Explanations, Interpretable Clustering & Other Recent Developments.

True class label: pool table
Model prediction: pool table

Saliency map, explains the 
model prediction
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Explainability in ML

• Feature relevance (or feature attribution) is also applied with non-image data for 
quantifying the influence of each input variable toward the model decision

▪ E.g., the figure shows explainability via feature importance of an ML model for 
determining the interest rate of a bank loan

Explainability in ML

Picture from: Lundberg – SHAP documentation: https://shap.readthedocs.io/en/latest/

https://shap.readthedocs.io/en/latest/
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Concerns by Stakeholders

• Concerns regarding explainable AI faced by various stakeholders

▪ How does a model work?

▪ What is driving decisions?

▪ Can I trust the model?

Explainability in ML

Picture from: Belle (2020) Principles and Practice of Explainable Machine Learning
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Concerns when Deploying ML

• Correctness

▪ Did only the variables of interest contribute to the decision, and not spurious patterns 
and correlations?

• Robustness

▪ Is the model sensitive to minor data perturbations, or missing and/or noisy data?

• Bias

▪ Are we aware of any data-specific biases that unfairly penalize groups of individuals?

• Improvement

▪ Can the model be improved, e.g., via enhanced training data or feature space?

• Transferability

▪ Can the model trained for one application domain be applied to another domain? 

• Human comprehensibility

▪ Can we explain the model’s decision-making algorithm to a human domain-expert, or 
to a lay person? 

Explainability in ML
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ML Bias

• Example of a biased ML algorithm

Explainability in ML

Picture from: Freddy Lecue, XAI – Explanation in AI
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Transparency

• Transparency stands for a human-level understanding of the inner workings of 
the model

• Transparent models are characterized by:

▪ Simulatability – the model can be simulated by a human

▪ Decomposability – the model can be broken down into parts (e.g., inputs, parameters, 
computations) that can be explained

▪ Algorithmic transparency – the model allows to understand the procedure that it goes 
through in order to generate its output

• Broadly, we can think of ML models as: 

▪ Transparent (interpretable) models

o Simpler models, easier to understand

o E.g., decision trees, linear regression, logistic regression, rule-based models (if-else), k-nearest 
neighbors, Bayesian networks

▪ Opaque (black-box) models

o Nontransparent, difficult to understand

o E.g., deep learning models, random forests, support vector machines, ensemble models

Explainability in ML
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Transparent Models

• Explainability in ML

Explainability in ML

Picture from: Belle (2020) Principles and Practice of Explainable Machine Learning
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Opaque Models

• Explainability in ML

Explainability in ML

Picture from: Belle (2020) Principles and Practice of Explainable Machine Learning
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Interpretability vs Accuracy

• Currently, the best performing models in terms of accuracy are the least 
interpretable

▪ Future research areas based on explainable modelling approaches offer a potential to 
enhance the interpretability of most ML models

Explainability in ML

Picture from: Arietta (2019) – Explainable Artificial Intelligence (XAI) 
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Transparent vs Opaque Models

• At present , there are two major alternatives to achieving interpretability: 

1. Via transparent models, employ inherently interpretable models

o They offer simplicity, since the explanation is embedded in the model

– E.g., the weight coefficients 𝐰 in the linear model 𝑤0 + 𝑤1𝑓1 + 𝑤2𝑓2 + ⋯ + 𝑤𝑛𝑓𝑛 indicate which 
features 𝐟 contributed the most to the decision

– By following the branches in a decision tree model from the final outcome to the inputs,  it is fairly 
easy to realize how the model made the predictions

– Based on the applied if-then logic in a rule-based system, it is possible to understand the path from 
the inputs to the model prediction

o The model simplicity can result in lower performance than more complex, but non-
transparent models

– In a critical application, a transparent model with lower accuracy may be acceptable

2. Post-hoc explainability: employ a post-hoc step to explain the predictions by opaque 
models

o First train the opaque black-box model, and afterward apply another method to explain its 
decision-making process

o Explanation by important features, concepts, influential examples

o Downside: one extra step is needed to explain the black-box model

Explainability in ML
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Map of Explainability Approaches

• Explainability in ML

Explainability in ML

Picture from: Belle (2020) Principles and Practice of Explainable Machine Learning
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Model-agnostic Explainability

• Model-agnostic explainability 

▪ Explainability techniques and methods that can be applied to explain any ML method

▪ They don’t depend on the internal architecture of the model that needs to be explained

▪ Instead, they operate by relating the inputs of the model to its outputs

• Model-specific explainability

▪ Explainability techniques and methods that are designed for explaining one or several 
types of ML models

▪ These methods cannot be used for explaining any type of ML models

Explainability in ML
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Type of Explanations

• Pixel-level explanations

▪ Vanilla BackProp, Guided BackProp, Occlusion Maps, CAM, Grad-CAM, Guided 
Grad-CAM, Integrated Gradients, Layer-wise Relevancy Propagation

• Feature-level explanations

• Concept-level explanations

• Instance-level explanations 

Type of Explanations
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Vanilla Backpropagation

• Vanilla Backpropogation

▪ Simonyan (2014) – Deep Inside Convolutional Networks: Visualising Image 
Classification Models and Saliency Maps

• The approach uses backpropagation to visualize the gradients with respect to 
each pixel of an image

▪ A saliency map is obtained that highlights the pixels that have the largest impact on 
the class score

o Image and the corresponding saliency map for the top-1 predicted class

Pixel-level Explanations

https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
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Vanilla Backpropagation

• The input to the DL model is an image 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑑

• The neurons at layer j take the outputs from layer i (e.g., 𝑧𝑗 = σ𝑖 𝑢𝑖 𝑊𝑗𝑖) and apply 

an activation function 𝑔 to transform the inputs (e.g., 𝑢𝑗 = 𝑔(𝑧𝑗))

• The vector of logits values for c-class classification is 𝐳 = 𝑧1, 𝑧2, … , 𝑧𝑐

• The logits vector 𝐳 is passed through softmax activations to produce the output 
probabilities y

• Question: How important is the pixel 𝑥𝑖 to the class score 𝑧𝑐(𝐱)?

▪ Sensitivity: How sensitive is the score 𝑧𝑐(𝐱) to changes in 𝑥𝑖?

▪ Attribution: How much does 𝑥𝑖 contribute to the score 𝑧𝑐(𝐱)?

Pixel-level Explanations
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Vanilla Backpropagation

• Explaining the class score 𝑧𝑐(𝐱) of a trained DL model for an input image x in a 
post-hoc step

▪ Forward propagation: Compute activations and the logits vector z

▪ Backward propagation:  Compute the gradient of the class score 𝑧𝑐 with respect to 

pixel 𝑥𝑖 , 
𝜕𝑧𝑐

𝜕𝑥𝑖

o For each neuron j on second-last layer: 
𝜕𝑧𝑐

𝜕𝑢𝑗
= 𝑊𝑐𝑗

o For each neuron i on third-last layer: 
𝜕𝑧𝑐

𝜕𝑢𝑖
= σ𝑗 𝑊𝑗𝑖

𝜕𝑢𝑗

𝜕𝑧𝑗

𝜕𝑧𝑐

𝜕𝑢𝑗

o … the gradients are propagated to the input image to calculate 
𝜕𝑧𝑐

𝜕𝑥𝑖

• Recall that for model training, the gradient of the loss with respect to the weights 

is used for learning the optimal weight values, i.e., 
𝜕ℒ 𝐲,ො𝐲

𝜕𝑊𝑗𝑖

Pixel-level Explanations
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Guided Backpropagation

• Guided Backpropagation

▪ Springerberg (2015) – Striving for Simplicity: Thee All Convolutional Net

• It expands the gradient backpropagation approach

▪ If the gradient of a neuron is negative (
𝜕𝑧𝑐

𝜕𝑢𝑗
< 0), it contributes negatively to the 

gradients of the neurons in the lower layers

▪ The guided backpropagation approach ignores negative gradients in the 
backpropagation step

o A ReLU function is used for this purpose: 
𝜕𝑧𝑐

𝜕𝑢𝑖
= σ𝑗 𝑊𝑗𝑖

𝜕𝑢𝑗

𝜕𝑧𝑗
𝑅𝑒𝐿𝑈

𝜕𝑧𝑐

𝜕𝑢𝑗
 

o Compare to Vanilla Backpropagation: 
𝜕𝑧𝑐

𝜕𝑢𝑖
= σ𝑗 𝑊𝑗𝑖

𝜕𝑢𝑗

𝜕𝑧𝑗

𝜕𝑧𝑐

𝜕𝑢𝑗
 

Pixel-level Explanations

https://arxiv.org/abs/1412.6806
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Guided Backpropagation

• Guided BackProp produces sharper saliency maps than Vanilla Gradient

▪ Figure from Adebayo (2018) – Sanity Checks for Saliency Maps

Pixel-level Explanations

https://arxiv.org/abs/1810.03292
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1810.03292
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Occlusion Maps

• Occlusion maps, also known as Perturbation Methods

▪ Zeiler (2014) – Visualizing and Understanding Convolutional Networks

• Systematically occlude different portions of the input image with a grey square, 
and monitor the output of the classifier

▪ E.g., in the image, the strongest feature is the dog’s head

• Occlusion maps is an older and computationally expensive method

Pixel-level Explanations

https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1311.2901
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CAM

• CAM (Class Activation Mapping)

▪ Zhou (2016) – Learning Deep Features for Discriminative Localization

• CAM produces a heatmap for the pixels that activate the most model’s prediction 
of a specific class of objects

▪ E.g., heatmaps for the top 5 predicted classes for the image with a true label ‘dome’

o Note that the ‘palace’ prediction focuses on the lower flat part of the building, while the 
‘dome’ prediction focuses on the upper part

Pixel-level Explanations

https://arxiv.org/abs/1512.04150
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CAM

• Let 𝐴𝑘 = [𝑎𝑖𝑗
𝑘  ] denotes the k-th feature map of the last convolutional layer in the 

network

• A global average pooling (GAP) layer is employed to calculate a value 𝑤𝑘 for the 

feature map 𝐴𝑘, i.e., 𝑤𝑘= σ𝑖,𝑗 𝑎𝑖𝑗
𝑘

▪ The outputs of the GAP layer 𝑤1, … , 𝑤𝑘 are fed to a softmax layer to output class 
predictions

• For a class c, the CAM heatmap is calculated as σ𝑘 𝑤𝑘
𝑐𝐴𝑘

Pixel-level Explanations
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CAM

• Limitation: the last convolution layer has small resolution (typically between 7×7 
and 28×28 pixels), therefore the produced heatmaps are coarse

• CAM applied to object recognition and action recognition tasks

Pixel-level Explanations
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Grad-CAM

• Grad-CAM

▪ Selvaraju (2017) – Grad-CAM: Visual Explanations from Deep Networks via Gradient-
based Localization

• Grad-CAM is an extension of the CAM approach

▪ It employs gradient backpropagation to improve the heatmaps

o Compare Grad-CAM to Guided BackProp for the classes ‘Cat’ and “Dog’ in the image 

Pixel-level Explanations

https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391
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Grad-CAM

• Grad-CAM first computes the gradient of the logits for class c with respect to the 
feature maps 𝐴𝑘 = [𝑎𝑖𝑗

𝑘  ] of the last convolutional layer in the network

▪ I.e., the gradient is  
𝜕𝑧𝑐

𝜕𝑎𝑖𝑗
𝑘

• The importance of the feature map 𝐴𝑘 is calculated as: 𝑤𝑘= σ𝑖,𝑗
𝜕𝑧𝑐

𝜕𝑎𝑖𝑗
𝑘

• The Gad-CAM heatmap for a class c is calculated as: 𝑅𝑒𝐿𝑈 σ𝑘 𝑤𝑘
𝑐𝐴𝑘

▪ ReLU is used to select only the feature maps 𝐴𝑘 that have positive influence on 𝑧𝑐

Pixel-level Explanations



31

CS 487/587, Spring 2024

Grad-CAM

• Example, the values 𝑤𝑘 for a network with 512 feature maps are shown below

Pixel-level Explanations

Feature map 𝐴0: 0
Value 𝑤0: -0.01

Values 𝑤𝑘 for 𝑘 = 0,1, . . , 511 Final heatmap
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Guided Grad-CAM

• Like the original CAM method, the Grad-CAM heatmaps have smaller 
dimensions than the input image

• The authors of Grad-CAM proposed Guided Grad-CAM approach, in which the 
heatmaps produced by Grad-CAM are upsampled and multiplied with the 
saliency map from Guided BackProp

Pixel-level Explanations
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Guided Grad-CAM

• Guided Grad-CAM produces sharper and more discriminative saliency maps 
than Guided BackProp 

Pixel-level Explanations
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Guided Grad-CAM

• Pixel-level Explanations

Pixel-level Explanations
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Grad-CAM and Counterfactual Explanations

• To identify region that contributes positively to a classification

▪ Importance weights: 𝑤𝑘
𝑐 = σ𝑖,𝑗

𝜕𝑧𝑐

𝜕𝑎𝑖𝑗
𝑘   and heatmap: 𝑅𝑒𝐿𝑈 σ𝑘 𝑤𝑘

𝑐𝐴𝑘

• To identify region that contributes negatively to a classification

▪ Importance weights: 𝑤𝑘
𝑐 = σ𝑖,𝑗 −

𝜕𝑧𝑐

𝜕𝑎𝑖𝑗
𝑘   and heatmap: 𝑅𝑒𝐿𝑈 σ𝑘 𝑤𝑘

𝑐𝐴𝑘

• Removing the negative region makes the classification more confident

▪ The modified images are counterfactual explanations (emphasizing the regions that 
are opposite to the factual prediction)

Pixel-level Explanations
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Guided Grad-CAM for Model Analysis

• Seemingly unreasonable predictions by models have reasonable explanations

Pixel-level Explanations
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Grad-CAM for Predicting Model Bias

• For a biased model, gender is strongly correlated with being a doctor or nurse

• For an unbiased model, gender is independent of being a doctor or nurse

Pixel-level Explanations
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Integrated Gradients

• Integrated Gradients

▪ Sundarajan (2017) - Axiomatic Attribution for Deep Networks

• Integrated gradients employs the integral of the gradients of a black-box model F 
along a straight-line path from a baseline input z to an input instance x

▪ The integrated gradient for pixel i is calculated as

𝐼𝐺𝑖 𝐱, 𝐳 = 𝐱 − 𝐳 ∙ න
𝛼=0

1 𝜕𝐹 𝛼 ∙ 𝐱 + 1 − 𝛼 ∙ 𝐳

𝜕𝑥𝑖
𝑑𝛼

▪ E.g., in the figure below, the integrated gradients are sharper and more discriminative 
than the regular gradients

Pixel-level Explanations

https://arxiv.org/abs/1703.01365
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Integrated Gradients

• A key step in Integrating Gradients is selecting a baseline for the integration

▪ Ideally, the baseline 𝐳 is an information-less input for the model

▪ This allows to better interpret the attributions as a function of the input

o E.g., black image is used as a baseline for image models

o E.g., empty text or zero-embedding vector for text models

• Integrated Gradients explain 𝐹(𝐱) − 𝐹(𝐳) in terms of input features

• E.g., application of IG for diabatic retinopathy prediction

▪ The original image is on the left with the ground-truth lesions, and the on the right are 
the feature attributions pointing to the areas with lesions

Pixel-level Explanations
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Integrated Gradients

• Examples

Pixel-level Explanations
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LRP

• LRP (Layer-wise Relevancy Propagation)

▪ Bach (2015) - On Pixel-Wise Explanations for Non-Linear Classifier Decisions by 
Layer-Wise Relevance Propagation

• LRP calculates the attribution (i.e., relevance, importance) of each pixel i in the 
input image x to the model prediction 𝑓(𝒙)

▪ The prediction 𝑓(𝒙) is propagated backward from the last layer toward the input layer

▪ The sum of the relevance scores of all input pixels 𝑅𝑖 is set equal to the predicted score 
for the class ‘rooster’

Pixel-level Explanations

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
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LRP

• Left image: the forward pass of the input image through the model results in the 
prediction ‘rooster’ 

• Right image: the relevance score 𝑅𝑗
(𝑙+1)

 of the output neuron for the class ‘rooster’ 

is backpropagated from the top layer down to the input

▪ The relevance score of neuron j in layer 𝑙 + 1, i.e., 𝑅𝑗
(𝑙+1)

 is decomposed into relevance 

scores of the neurons in the previous layer 𝑙, via 𝑅𝑖
(𝑙)

= σ𝑗

𝑥𝑖𝑤𝑖𝑗

σ𝑖′ 𝑥𝑖′𝑤𝑖′𝑗
 𝑅𝑗

(𝑙+1)

o 𝑤𝑖𝑗  are the weights between neurons i and j, and 𝑥𝑖 is the input to neuron i

Pixel-level Explanations
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LRP

• The sums of the relevance scores over all layers is preserved

σ𝑖 𝑅𝑖 = ⋯ = σ𝑖 𝑅𝑖
𝑙

= σ𝑖 𝑅𝑗
𝑙+1

= . . = 𝑓(𝑥) 

▪ Meaning all layers (from the input layer of pixels 𝑅𝑖, all internal layers in the model 

𝑅𝑖
𝑙 , to the neuron in the last prediction layer 𝑓(𝑥) ) have the same sum of the 

relevance scores

• The authors of LRP extended their approach by employing a modified Taylor 
expansion for the propagation of the relevance scores between the layers

▪ Montavon (2017) - Explaining Nonlinear Classification Decisions with Deep Taylor 
Decomposition

▪ They refer to as deep Taylor decomposition

▪ The approach introduces rules for decomposing the relevance in different type of 
layers in deep NNs

Pixel-level Explanations

https://arxiv.org/abs/1512.02479
https://arxiv.org/abs/1512.02479
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LRP

• Images and the corresponding LRP heatmaps

Pixel-level Explanations

Frog

Shark

Cat

Sheep
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Application of Attributions

• Generating an explanation for the end-user

▪ E.g., identify pixel attributions to a model’s prediction

• Debugging model predictions

▪ E.g., in the case of image misclassification, identify the pixels responsible for it

• Analyzing model robustness

▪ E.g., create adversarial examples using weaknesses surfaced by pixels’ attributions

• Extract rules from the model

▪ E.g., combine attributions to create rules for capturing the prediction logic of a drug 
screening model

Pixel-level Explanations
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Type of Explanations

• Pixel-level explanations

• Feature-level explanations

▪ LIME, Shapley values, SHAP

• Concept-level explanations

• Instance-level explanations 

Feature-level Explanations
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Feature-level Explanations

• Feature-level explanations refer to higher-level components in input data 

▪ For example, explaining regions in images at a higher abstraction than pixels

• Examples of features:

▪ Super-pixels in images

o Collections of pixels, e.g., obtained by image segmentation as in the image below

▪ Words in textual data

▪ Input variables in tabular data

Feature-level Explanations
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LIME

• LIME (Local Interpretable Model-agnostic Explanations)

▪ Ribeiro (2016) – "Why Should I Trust You?": Explaining the Predictions of Any 
Classifier

• LIME is a model-agnostic explainability approach (it can work with any type of 
ML black-box models) 

• The goal is to employ a simple ML model that can locally approximate the 
predictions by a black-box model

▪ The simple ML model should identify interpretable representations of the data that 
are locally faithful to the black-box model

▪ The interpretable representations should be understandable to a human user

▪ Conversely, the input features (i.e., original representations of the data) may not be 
understandable to a human user

Feature-level Explanations

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
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LIME

• Consider the image classification task

▪ Original representation of an image x is the tensor of image pixels

▪ A simplified representation of the image can consist of an array of super-pixels

▪ Interpretable representation can indicate the presence or absence of super-pixels to 
describe a specific class label

o Let assign a binary value 𝑧 ∈ 0,1  to each super-pixel, depending on whether the super-pixel 
is important for predicting the class c

o The vector z of binary values over the set of all super-pixels is the interpretable representation

– For this image, the vector z contain 1’s for the important super-pixels for the class ‘frog tree’ and 0’s for 
the non-important super-pixels for that class

Feature-level Explanations

Original representation
x

Interpretable representation
𝐳 = (0,0,1,0,1, … , 0)
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LIME

• LIME explanation example

▪ Explaining the top 3 class predictions by a trained Inception neural network: (1) 
electric guitar, (2) acoustic guitar, and (3) Labrador

▪ The images (b), (c), and (d) show the super-pixels that contributed the most to each 
class prediction

Feature-level Explanations
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LIME

• The classification black-box model that needs to be explained is denoted 𝑓 

▪ This can be any ML classifier model, such as neural network, random forest, ensemble 
models, etc.

▪ The prediction by the black-box model for an input 𝐱 is 𝑓(𝐱)

▪ E.g., the prediction is the probability that the input 𝐱 belongs to a class 𝑐 

• LIME uses a surrogate model 𝑔 for explaining 𝑓

▪ The surrogate model is an interpretable classifier model, such as a linear model, 
decision trees, rule lists model, etc.

▪ The surrogate model 𝑔 acts over the vector 𝐳, related to the presence or absence of 
interpretable components in the input (using 0’s and 1’s for each component)

▪ The prediction by the surrogate model is 𝑔(𝐳)

• The prediction by the surrogate model 𝑔(𝐳) should be locally faithful to the 
prediction of the explained classifier 𝑓(𝐱) in the neighborhood of the input 𝐱

▪ I.e., the surrogate model should locally approximate the black-box model, and make 
approximately the same prediction: 𝑔(𝐳) ≈ 𝑓(𝐱) 

▪ The assumption is that the decision boundary of the black-box model is locally linear 
(although globally this boundary can be very complex)

Feature-level Explanations



52

CS 487/587, Spring 2024

LIME

• The surrogate model 𝑔 is chosen from a family of interpretable models 𝐺 (linear 
or rule models, decision trees), and it is found by minimizing the cost function:

arg min
𝑔∈𝐺

ℒ 𝑓, 𝑔, 𝜋x + Ω 𝑔

• ℒ 𝑓, 𝑔, 𝜋x  measures how faithful 𝑔 𝐳  is in approximating 𝑓(𝐱) locally, in the 
neighborhood of the input 𝐱

• Ω 𝑔  is a penalty term for the model complexity

▪ I.e., a simpler model 𝑔 from the family of models 𝐺 is preferred, since simpler models 
are considered easier to interpret

• 𝜋x is a distance function which measures the distance between the input 𝐱 and 
instances 𝐱’ in the neighborhood of 𝐱

▪ The authors proposed the following form: 𝜋x = exp −𝐷 𝐱′, 𝐱 /𝜎  

▪ For images, ℓ2 distance is used for the distance 𝐷 in 𝜋x

• The cost function ℒ 𝑓, 𝑔, 𝜋x + Ω 𝑔  is approximated by drawing multiple 
samples in the neighborhood of the input 𝐱

Feature-level Explanations
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LIME

• The intuition behind LIME is shown in the figure

▪ The black-box model 𝑓 has a complex non-linear decision boundary

o Depicted by the blue and pink regions: red crosses belong to one class of objects, and blue 
circles belong to another class of objects

▪ The bold red cross is the instance 𝐱 being explained

▪ LIME samples instances in the neighborhood of 𝐱, it obtains class predictions using 𝑓, 
and weights the predictions based on the distance 𝜋x to the input 𝐱

▪ The dashed line is the learned linear explanation model 𝑔 that is locally faithful to 𝑓

o The global predictions by the simple linear ML model 𝑔 are not assumed faithful to the 
predictions by non-linear model 𝑓

Feature-level Explanations
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LIME

• LIME steps:

1. Given an input image x, perturb it to create instances with slight modifications (e.g., 
by setting the color of some super-pixels to gray)

2. Apply the black-box model 𝑓 to calculate the probability of perturbed instances x’

3. Select K super-pixels with top probabilities from the instances x’ using LASSO

4. Fit a simple (linear regression) model 𝑔 to the perturbed instances x’ (with the 
selected K super-pixels) weighted by their similarity distance 𝜋x to the original input x 

5. Use the super-pixels with the highest coefficients to explain the model prediction

Feature-level Explanations
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Shapley Values

• The Shapley values is a solution concept in game theory, named in honor of 
Lloyd Shapley

▪ He introduced this approach in 1951, and was awarded the Nobel Prize in Economics 
for it in 2012

• Players in a game cooperate in a coalition and receive a certain profit from this 
cooperation

▪ Players contribute differently to the total profit

▪ For each cooperative game, the Shapley approach assigns to each player a portion of 
the total profit generated by the coalition

▪ I.e., Shapley values tells us how to fairly distribute the "payout" among the players

• In ML, a prediction by a model can be explained by assuming that each feature 
of the data is a player in a game where the prediction is the payout

▪ Shapley values calculate the importance (the contribution) of different data features in 
making a specific prediction by the model

Feature-level Explanations
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Shapley Values

• Example: 

▪ Three persons share a taxi

▪ The costs for the individual journeys are:

o Person 1 journey: $6

o Person 2 journey: $12

o Person 3 journey: $42

▪ How much should each person contribute to the total cost of $42?

• Consider the problem as a cooperative game

▪ Create the sets of all possible coalitions between the three persons (i.e., players)

▪ For 3 players, there are 23 = 8 possible sets of coalitions (i.e., subsets of players) 𝑆: 
∅ , 1 , 2 , 3 , 1, 2 , 1, 3 , 2, 3 , 1, 2, 3

▪ For any coalition 𝑆, a characteristic function 𝑓(𝑆) assigns a payout value

o The assigned values are shown on the next page

Feature-level Explanations
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Shapley Values

• Table with the possible sets of coalitions 𝑆 and the corresponding payout values 
of the characteristic functions 𝑓(𝑆) for each set 

• How to divide the total cost of $42 among the three persons?

▪ The next page describes the approach using Shapley values

Feature-level Explanations
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Shapley Values

• The Shapley value for player 𝑖 is calculated as:

𝜙𝑖 𝑓 =
1

𝑀!
෍
𝜋∈Π 

Δ𝜋
𝑓

𝑖 =
1

𝑀!
෍

𝜋∈Π

𝑓 𝑆𝜋
𝑖 ∪ 𝑖 − 𝑓 𝑆𝜋

𝑖

• 𝑀 is the number of players

▪ For the taxi example with 3 players, the factorial is M! = 3! = 3 ⋅ 2 ⋅ 1 = 6

• 𝜋 is a permutation of the set 1, 2, . . , 𝑀

▪ E.g., for the set of three players there are 3! = 6 possible permutations

▪ Π denotes the permutations: 1, 2, 3 , 1, 3, 2 , 2, 1, 3 , 2, 3, 1 , 3, 1, 2 , and 3, 2, 1  

• Δ𝜋
𝑓

𝑖  is the marginal contribution of player 𝑖 to the Shapley value

▪ It is calculated as the difference between the values of the characteristic function 𝑓(𝑆) 

when the player 𝑖 is included 𝑓 𝑆𝜋
𝑖 ∪ 𝑖  and when player 𝑖 is excluded 𝑓 𝑆𝜋

𝑖  

from the coalition 

• 𝑆𝜋
𝑖  is the set of predecessors of player 𝑖 in 𝜋

Feature-level Explanations
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Shapley Values

• Let’s consider the following permutation of the set: π = 2, 3, 1  

▪ For player 1: 𝑖 = 1

o The set of predecessors of 1 in 2, 3, 1  is 𝑆𝜋
1 = 2, 3

o Similarly, 𝑆𝜋
1 ∪ 𝑖 = 𝑆𝜋

1 ∪ 1 = 1, 2, 3

o The marginal contribution of player 1 is Δ𝜋
𝑓

1 = 𝑓 𝑆𝜋
1 ∪ 1 − 𝑓 𝑆𝜋

1 = 𝑓 1, 2, 3 −
𝑓 2, 3 = 42 − 42 = 0

– The values for 𝑓 1, 2, 3  and 𝑓 2, 3  are read from the table on the previous page

▪ For player 2: 𝑖 = 2

o The set of predecessors is 𝑆𝜋
2 = ∅ , and 𝑆𝜋

2 ∪ 2 = 2

o The marginal contribution of player 2 is Δ𝜋
𝑓

2 = 𝑓 2 − 𝑓 ∅ = 12 − 0 = 12

▪ For player 3: 𝑖 = 3

o 𝑆𝜋
3 = 2 , and 𝑆𝜋

3 ∪ 3 = 2, 3

o The marginal contribution is Δ𝜋
𝑓

3 = 𝑓 2, 3 − 𝑓 2 = 42 − 12 = 30

Feature-level Explanations
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Shapley Values

• The table shows the marginal contributions Δ𝜋
𝑓

𝑖  by players 1, 2, and 3 for all 6 
permutations of the set 1, 2, 3

• The calculated Shapley values 𝜙𝑖 𝑓  for each player are shown at the bottom

▪ Therefore, the fair way of sharing the taxi fare is for player 1 to pay $2, player 2 to pay 
$5, and player 3 to pay $35

Feature-level Explanations

𝜋 Δ𝜋
𝑓

1 Δ𝜋
𝑓

2 Δ𝜋
𝑓

3

1, 2, 3 6 6 30

1, 3, 2 6 0 36

2, 1, 3 0 12 30

2, 3, 1 0 12 30

3, 1, 2 0 0 42

3, 2, 1 0 0 42

෍ Δ𝜋
𝑓

𝑖 12 30 210

𝜙𝑖 𝑓 =
1

6
෍ Δ𝜋

𝑓
𝑖 2 5 35
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Shapley Values

• Shapley values are often used to explain the prediction 𝑓(𝐱) of a black-box ML 
model 𝑓 on an input instance 𝐱

• Each feature of 𝐱 is regarded as a player, and the joint payout of all players 
(features) is 𝑓(𝐱) 

• We need to define a characteristic function 𝑓𝐱(𝑆), where S is a subset of the 
features 1, 2, … , 𝑀 , and M is the number of features

▪ There are several approaches for calculating 𝑓𝐱(𝑆), including:

1. Sample independently a set of input examples 𝐱1, … 𝐱𝑁 and estimate 𝑓𝐱(𝑆) as an average 

value of 𝑓(𝐱𝑖) for the subset of features in S based on 𝑓𝐱(𝑆) ≈
1

𝑁
σ𝑖=1

𝑁 𝑓(𝐱𝑖) 

2. Sample independently a set of input examples 𝐱1, … 𝐱𝑁 and estimate 𝑓𝐱(𝑆) as an average 

value based on features not in the subset S, i.e., 𝑓𝐱(𝑆) ≈
1

𝑁
σ𝑖=1

𝑁 𝑓(𝐱 ҧ𝑆
𝑖 ), where 𝐱 ҧ𝑆

𝑖  denotes the 

subset of features in 𝐱𝑖 that are not in the subset S

3. Sample independently a set of input examples 𝐱1, … 𝐱𝑁 and set the features not in the subset 

S to a reference value, and estimate 𝑓𝐱(𝑆) as 𝑓𝐱(𝑆) ≈
1

𝑁
σ𝑖=1

𝑁 𝑓(𝐱 ҧ𝑆
𝑖,𝑟), where 𝐱 ҧ𝑆

𝑖,𝑟 denotes the 

input 𝐱𝑖 with the reference values for the subset of feature that are not in the subset S

– For images, often 0 (black) intensity values of the pixels are used as reference value

– For tabular data, reference value is either the data mean, median, or a representative data example

Feature-level Explanations
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Shapley Values

• Example:

▪ ML model is trained to predict apartment prices

▪ Four features are used as inputs for model training and prediction: (1) size, (2) floor, 
(3) park-nearby, and (4) cat-banned

▪ For an apartment with a size of 50 m2, located on the 2nd floor, has a park nearby, and 
cats are banned, the predicted value by the model is $300K

▪ The average prediction for all apartments in the dataset is $310K

▪ Goal: explain how much each of the four features of the apartment contributed to the 
difference in the price between the average $310K and the predicted $300K

Feature-level Explanations

Picture from: https://christophm.github.io/interpretable-ml-book/shapley.html

$300K

https://christophm.github.io/interpretable-ml-book/shapley.html
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Shapley Values

• To calculate the Shapley values, let’s consider the contribution of the ‘cat-banned’ 
feature to the coalition (subset of features) of ‘park-nearby’ and ‘size-50’

▪ We randomly sample from the other apartments in the dataset and select a value for 
the ‘floor-size’ feature: for instance, the randomly drawn value is ‘1st-floor’

o We predict the price of the apartment: for this combination of features, it is obtained $310K

▪ Next, we replace the feature with one randomly selected value from the set {‘cat-
banned’, ‘cat-allowed’}: for instance, the randomly drawn value is ‘cat-allowed’

o We predict the price for this combination of features, obtaining $320K

▪ The contribution of the ‘cat-banned’ feature is the difference $310K − $320K = −10K

▪ We repeat the above steps by randomly drawing values of the features and take the 
average of the obtained contributions of the ‘cat-banned’ feature

• Similarly, we repeat the calculations for all possible coalitions of features

▪ There are 8 possible coalitions of ‘park-nearby’, ‘size-50’, and ‘2nd-floor’

▪ For each coalition, we compute the predicted apartment price with and without the 
‘cat-banned’ feature, and take the difference to obtain the marginal contribution

▪ The Shapley value 𝜙cat−banned will be the average of the marginal contributions by the 

‘cat-banned’ feature Δ𝜋
𝑓

cat − banned  to all coalitions

Feature-level Explanations
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Shapley Values

• The interpretation of the Shapley value for feature j is:

▪ The j-th feature contributed 𝜙𝑗 to the prediction of this particular instance compared 

to the average prediction for the dataset

• For instance, the figure presents the Shapley values of different features for one 
person, used in a random forest model for predicting cervical cancer

▪ The figure indicates that the person has high risk of cancer (0.54 probability above the 
average prediction of 0.03)

Feature-level Explanations

Picture from: https://christophm.github.io/interpretable-ml-book/shapley.html
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Shapley Values

• The figure presents the Shapley values of the features for the day 285, used in a 
random forest model for predicting the number of rented bikes per day

▪ The predicted number of rented bikes for that day is 2,409, which is -2,108 below the 
average daily prediction of 4,518 bikes

▪ The main contributors for the lower number are the weather situation and humidity

▪ Note that Shapley values can be negative

Feature-level Explanations

Picture from: https://christophm.github.io/interpretable-ml-book/shapley.html
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SHAP

• SHAP (SHapley Additive exPlanations)

▪ Lundberg (2016) - A Unified Approach to Interpreting Model Predictions

• SHAP connects Shapley Values and LIME approaches, by reformulating Shapley 
Values and adding new properties 

▪ The properties improved the performance and showed better consistency with human 
interpretation

• SHAP defines the explanation for an instance x as

𝑓 𝐱 = 𝜙0 + ෍

𝑖=1

𝑀

𝜙𝑖 𝑓, 𝐱

▪ 𝜙𝑖 𝑓, 𝐱  is the contribution of feature i to the explanation 𝑓 𝐱 , and it is called the 
SHAP value of i

o It is calculated based on the Shapley value: 𝜙𝑖 𝑓, 𝐱 =
1

𝑀!
σ𝜋∈Π 𝑓𝐱 𝑆𝜋

𝑖 ∪ 𝑖 − 𝑓𝐱 𝑆𝜋
𝑖

▪ 𝜙0 is the base value, calculated as the value of 𝑓 𝐱  when no feature is present, i.e., 
𝑓𝐱 ∅

▪ M is the number of features

Feature-level Explanations
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SHAP

• To calculate SHAP value, the authors propose Kernel SHAP, which combined 
Shapley Values and LIME

▪ I.e., the black-box model 𝑓 𝐱  is locally approximated with a linear model 𝑔 𝒛  

▪ z is a vector that represents the presence of absence of features, i.e., 𝒛 = 𝑧1, … , 𝑧𝑀

▪ The explanation is approximated by: 𝑓 𝐱 ≈ 𝑔(𝐳) = 𝜙0 + σ𝑖=1
𝑀 𝜙𝑖 𝑓, 𝐱 𝑧𝑖

• Recall the formulation of LIME: arg min
𝑔∈𝐺

ℒ 𝑓, 𝑔, 𝜋x + Ω 𝑔

• SHAP values 𝜙𝑖 𝑓, 𝐱  are calculated by solving LIME using the following:

▪ Ω 𝑔 = 0

▪ 𝜋x 𝐳 =
𝑀−1

𝑀
𝑧

𝑧 𝑀− 𝑧

▪ ℒ 𝑓, 𝑔, 𝜋x = σ𝑧 𝑓 𝐱′ − 𝑔(𝐳) 2 𝜋x 𝐳

where 𝑧  is the number of non-zero elements in z

• The authors also proposed TreeSHAP, which is a variant of SHAP for tree-based 
models (decision trees, random forests)

Feature-level Explanations
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SHAP

• Example: mean SHAP values per feature, using a random forest model for 
predicting cervical cancer

▪ The number of years with hormonal contraceptives was the most important feature  

Feature-level Explanations
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Type of Explanations

• Pixel-level explanations

• Feature-level explanations

• Concept-level explanations

▪ TCAV, ACE

• Instance-level explanations 

Concept-level Explanations
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Concept-level Explanations

• Pixel-level importance: which input pixels are important when a model classifies 
one input example? (Local Explanation)

• Concept-level importance: which high-level concepts are important when a 
model classifies one class of inputs across the entire dataset? (Global 
Explanation)

▪ E.g., the figure shows concepts for recognizing the class “doctor” in images: the 
training set does not have class labels for the concepts “White coat" or “Stethoscope”

Concept-level Explanations
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TCAV

• TCAV (Testing with Concept Activation Vectors)

▪ Kim (2018) - Interpretability Beyond Feature Attribution: Quantitative Testing with 
Concept Activation Vectors (TCAV)

• For instance: how important is the concept “striped" for assigning the zebra class 
label by a classifier

• The approach consists of three steps:

1. Represent the concept as a vector (referred to as Concept Activation Vector (CAV))

2. Quantify the sensitivity of an image to the CAV vector

3. Measure the importance of the concept to multiple images of the same class

Concept-level Explanations
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TCAV

• Step 1: Represent the concept (e.g., “striped”) as a vector

▪ Collect a set of positive examples 𝒫𝐶  of the concept 𝐶, and a set of negative examples 𝒩

▪ Obtain the activations 𝑓𝑙(𝐱) for each training example 𝐱 at a layer l of the model

▪ Use the layer activations 𝑓𝑙(𝐱) for all images in 𝒫𝐶  and 𝒩 to train a binary linear 
classifier to separate the sets 𝒫𝐶  and 𝒩 into: 𝑓𝑙(𝐱): 𝐱 ∈ 𝒫𝐶  and 𝑓𝑙(𝐱): 𝐱 ∈ 𝒩

▪ The vector 𝑣𝑐
𝑙 that is normal to the decision boundary of the linear classifier (the red 

arrow) is called concept activation vector (CAV) for the concept 𝐶

o The CAV vector 𝑣𝑐
𝑙  represents the orthogonal direction to the decision boundary, along which 

the probability of the concept class 𝐶 increases the fastest

Concept-level Explanations

𝒫𝐶  positive examples

𝒩 negative examples

Black-box classifier
Layer l 

Binary linear classifier

Activations vector 𝑓𝑙(𝐱)

Positive examples Negative examples
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TCAV

• To assess whether the CAV vector 𝑣𝑐
𝑙 captures the intended concept C, use it to 

sort images in an external set (not in the training sets 𝒫𝐶  and 𝒩)

▪ E.g., the following are the top 3 and the bottom 3 images for two concepts

o Concept “suit” for the class CEO (left), and concept “lab coat” for the class boss (right) 

Concept-level Explanations
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TCAV

• Step 2: Calculate directional derivative of the class score w.r.t concept

▪ Let x be an image with a predicted class k, and 𝑧𝑘(𝐱) be the prediction score (logit 
value) by the black-box model for the class k

o 𝑧𝑘(𝐱) is also a function of the activations 𝑓𝑙(𝐱) at layer l, and it can be written as 𝑧𝑘 𝑓𝑙 𝐱

▪ Pixel-level explainable approaches typically employ the gradient 
𝜕𝑧𝑘(𝐱)

𝜕𝑥𝑖
, which 

measures how sensitive the class score 𝑧𝑘 is to small perturbations to the pixel 𝑥𝑖

o I.e., the gradient quantifies how important the pixel 𝑥𝑖  is to predicting the class k

▪ TCAV introduces directional derivative (denoted 𝑆𝐶,𝑘,𝑙(𝐱)) to measure how sensitive 
the class score 𝑧𝑘 is to small perturbations in the direction of the CAV vector 𝑣𝑐

𝑙  :

𝑆𝐶,𝑘,𝑙 𝐱 = lim
𝜖→0

𝑧𝑘 𝑓𝑙 𝐱 + 𝜖 ∙ 𝑣𝑐
𝑙 − 𝑧𝑘 𝑓𝑙 𝐱

𝜖
= 𝛻𝑧𝑘 𝑓𝑙 𝐱 ∙ 𝑣𝑐

𝑙

▪ E.g., for the shown image of zebra x, the directional derviative 𝑆𝐶,𝑘,𝑙 𝐱  quantifies the 
sensitivity of the class k logit in the black-box classifier to the concept “striped” at the 
layer l

Concept-level Explanations
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TCAV

• Step 3: Testing with CAVs (TCAV) 

▪ For the set of all input instances 𝐗𝑘 with the ground truth label 𝑘, TCAV is the fraction 
of instances whose 𝑙-layer CAV vector has positive value

𝑇𝐶𝐴𝑉 𝐶, 𝑘 𝑙 =
𝐱 ∈ 𝐗𝑘: 𝑆𝐶,𝑘,𝑙 𝐱 > 0

𝐗𝑘

▪ 𝑇𝐶𝐴𝑉 measures how important the concept C is to the model for assigning the class 
label 𝑘 to the set of input instances 𝐗𝑘

o I.e., it is global metric of the concept C for all images with a given label

o Note that 𝑇𝐶𝐴𝑉 𝐶, 𝑘 𝑙 ∈ 0, 1

▪ To eliminate spurious correlations, the authors calculated TCAV scores multiple times 
with different random sets of images, and applied a t-test hypothesis testing

o If 𝒫𝐶  and 𝒩 do not have significant impact on obtained TCAV values, the TCAVs for the 
positive and negative examples would be equal (i.e., 0.5)

• The major drawback of the TCAV approach:

▪ Requires to manually construct positive sets of examples 𝒫𝐶  that contain the concept 
of interest

o The negative set 𝒩 can include any random images that don’t contain the concept

Concept-level Explanations
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TCAV

• TCAV evaluation of the Inception v3 model for different concepts

▪ E.g., in the upper-left figure, TCAVs are shown for the concepts: Latino, East Asian, 
African, and Caucasian, with respect to the class “ping-pong ball” 

o The bars show the TCAVs for 3 different layers of Inception v3 (mixed 8, 9, and 10)

o None of these concepts are included in the ground-truth class labels in the dataset

o There is a high correlation between the concept East Asian and the class ping-pong ball

Concept-level Explanations
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ACE

• ACE (Automatic Concept-based Explanations)

▪ Ghorbani (2019) - Towards Automatic Concept-based Explanations

• ACE automatically extracts visual concepts

a) Images from the same class are segmented at multiple resolutions, resulting in a pool 
of image patches

b) The obtained image segments are resized to the input resolution, and activation 
vectors from one layer of the black-box model are used to cluster similar segments 

c) TCAV scores are used to sort the clusters of concepts based on their importance 

Concept-level Explanations

https://arxiv.org/abs/1902.03129
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ACE

• The multiple resolutions of the extracted image segments 
extract concepts at both fine-grained and course-grained 
abstractions (e.g., textures, parts, objects)

▪ The authors use three different resolutions of segments

▪ An existing approach for image segmentation based on 
super-pixels was applied (middle image on the right)

• Similar segments are grouped together using k-mean 
clustering based on the Euclidean (ℓ2) distance between 
the activation vectors from one layer of the back-box 
model

▪ Outlier segments that have low similarity to the clustered 
segments were removed

• ACE advantage over the TCAV approach:

▪ It does not require a manual selection of a set of positive 
and negative images for a concept

Concept-level Explanations
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ACE

• Experimental evaluation was performed on the Inception v3 model by selecting 
the activations from the mixed_8 layer for concept explanation

• E.g., for the “Police Van” class, the four most important concepts are: (1) tires, (2) 
letters of the Police logo, (3) windows, and (4) fenders

Concept-level Explanations
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ACE

• Similarly, for the “basketball” class, the four most important concepts are: (1) 
player’s jersey, (2) ball, (3) court’s floor, and (4) player’s hand

▪ Interestingly, the player’s jersey is a more important concept than the ball

Concept-level Explanations
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ACE

• In addition, the trained Inception v3 model can make the correct class prediction 
on images with randomly stitched concept segments for that class

▪ That is, CNNs for image classification overly rely on pattern (texture) recognition

o Meaningless combinations of patterns from a class result in correct class prediction

Concept-level Explanations
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Type of Explanations

• Pixel-level explanations

• Feature-level explanations

• Concept-level explanations

• Instance-level explanations 

▪ Prototypes and criticisms, counterfactual explanations

Instance-level Explanations 
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Instance-level Explanations

• Instance-based explanation methods use particular input instances to explain 
the behavior of a black-box model

• E.g., k-nearest neighbors is an interpretable model which employs k data 
instances to make a prediction 

▪ The k-NN prediction for one input instance can be explained based on the 
characteristics of the k neighbors

• Similar, we use past experiences to make new predictions

▪ E.g., a doctor seeing a patient with specific symptoms may remind her of another 
patient with the same symptoms, and may suspect that the patient may have the same 
disease

▪ E.g., an employee who works on risk analysis may recall a similar project that he 
completed in the past, and he may decide to reuse the same approach for the current 
task

• Instance-based explainability approaches are based on:

▪ Prototypes or criticisms

▪ Counterfactual examples

Instance-level Explanations 
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Prototypes and Criticisms

• Prototypes and criticisms

▪ Kim (2016) - Examples are not Enough, Learn to Criticize! Criticism for Interpretability

• It is a global explanation method that explains class predictions by a black-box 
model based on collections of representative instances

▪ Prototypes: representative examples of the class

▪ Criticisms: examples of the class that are not well represented by the prototypes

• The authors used Maximum Mean Discrepancy (MMD) to measure the 
discrepancy between two distributions, given by

𝑀𝑀𝐷2 =
1

𝑚2
σ 𝑘 𝑧𝑖 , 𝑧𝑗 −

2

𝑚𝑛
σ 𝑘 𝑧𝑖, 𝑥𝑗 +

1

𝑛2
σ 𝑘 𝑥𝑖 , 𝑥𝑗

▪ m is the number of prototypes z, n is the number of instances x of the original dataset

▪ k is a kernel function that measures the similarity of two instances, which is adopted 
as the radial basis function 𝑘 𝑥, 𝑥′ = 𝑒𝑥𝑝 −𝛾 𝑥 − 𝑥′ 2 , with a scaling parameter 𝛾

• The approach is referred to as MMD-critic

▪ Prototypes are selected so that their distribution is close to the input data distribution, 
whereas the distribution of criticisms is far from the data distribution

Instance-level Explanations 

https://beenkim.github.io/papers/KIM2016NIPS_MMD.pdf
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Prototypes and Criticisms

• To find prototypes:

1. Start with an empty set of prototypes

2. While the number of prototypes is below the chosen number m:

o For each instance in the dataset, check how much MMD is reduced when the instance is 
added to the set of prototypes

o Add the data instance that minimizes MMD to the set of prototypes

3. Return the set of prototypes

• To find criticisms, the following witness function is used:

witness 𝑥 =
1

𝑛
σ 𝑘 𝑥, 𝑥𝑖 −

1

𝑚
σ 𝑘 𝑥, 𝑧𝑗

▪ The witness function evaluates which of two distributions fits the instance x better

• For a trained black-box model, the predicted classes for the prototypes and 
criticisms can help to understand the model

▪ E.g., via analysis of the cases when the model made wrong predictions

Instance-level Explanations 
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Prototypes and Criticisms

• The figure shows prototypes and criticisms from the USPS dataset of 
handwritten digits

▪ The prototypes represent common way of writing digits, whereas the criticisms 
represent outliers and ambiguously written digits

Instance-level Explanations 
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Prototypes and Criticisms

• Protypes and criticisms for two breeds of dogs from the ImageNet dataset

• The addition of criticisms examples to the prototypes made it easier for human 
subjects to identify the defining features of different classes and improved the 
interpretability

Instance-level Explanations 

Criticism: dogs in 
movement

Criticism: black-
and-white image

Criticism: dogs in 
costumes



88

CS 487/587, Spring 2024

Counterfactual Explanations

• Counterfactuals: Help to answer “what would have happened if" question

▪ Wachter (2017) – Counterfactual Explanations Without Opening the Black Box: 
Automated Decision and the GDPR

• Consider the case where an ML model was used for deciding on a loan 
application

▪ E.g., John’s feature vector is x, and his loan application was denied by the model (it 
was assigned to the class c)

• Counterfactual explanation

▪ The loan would have been granted if income was $45,000 instead of $30,000

▪ That is, the application would have been assigned to class c’ instead of c, if John's 
feature vector was x’ instead of x

Instance-level Explanations 

https://arxiv.org/abs/1711.00399
https://arxiv.org/abs/1711.00399
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Counterfactual Explanations

• Finding a counterfactual example x’ to an input example x:

▪ The difference between the counterfactual example x’ and the original input example x 
should be small

▪ The counterfactual example x’ should be misclassified by the model as another class c’ 
(whereas the original input example x is classified as class c)

▪ The change from x to x’ should be feasible in the real-world (actionability)

o Actionable examples: the loan would be granted if income was $45,000 instead of $30,000

o Not actionable example: the loan would be granted if age was 30 instead of 50

• Note that the above procedure is the same as when creating adversarial 
examples in ML 

▪ Adversarial examples are also counterfactuals, only they are used to attack the model, 
rather than to explain it

Instance-level Explanations 
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Counterfactual Explanations

• Counterfactual visual explanations

▪ Goyal (2019) - Counterfactual Visual Explanations

• Find a counterfactual visual example for the left image I classified by the model 
as class c (Crested Auklet), so that the model would classify it as class c’ (Red Faced 
Cormorant)

▪ Select a distractor image I’ (right figure) of the class c’

▪ Identify regions in I and I’ (outlined with the red squares) such that if the region in I is 
replaced with the region in I’, the model would classify I as c’

▪ Counterfactuals explain the most important features for classifying an image

Instance-level Explanations 

https://arxiv.org/abs/1904.07451
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Counterfactual Explanations

• Example: the left images are original input images of a class (digits 1, 7, or 3)

▪ The middle column has a distractor image for misclassifying the original image

o The highlighted pixels identify the regions for misclassifying the original image

o E.g., if the highlighted region in 1 is replaced with the highlighted region in 4, the class of the 
image of digit 1 would change to 4

▪ The composite images show the original images with the highlighted region of the 
distractor images added

Instance-level Explanations 
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Additional References

1. Nevin L. Zhang (Hong Kong University of Science and Technology) – Machine 
Learning course, Lecture 9 – Explainable AI 

2. Belle et al. (2020) – Principles and Practice of Explainable Machine Learning

3. Christoph Molnar (2020) – Interpretable Machine Learning: A Guide for 
Making Black Box Models Explainable

4. Arietta et al. (2019) – Explainable Artificial Intelligence (XAI): Concepts, 
Taxonomies, Opportunities and Challenges toward Responsible AI

5. Geyik, KDD 2019 Tutorial, Explainable AI in Industry, 2019.

6. Hima Lakkaraju, CS282BR: Topics in Machine Learning. 
Interpretability and Explainability, 2020.

7. Freddy Lecue, XAI – Explanation in AI: From Machine Learning to Knowledge 
Representation & Reasoning and Beyond, 2019.
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