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JOINT EFFECTS OF DENSITY DEPENDENCE AND RAINFALL ON 
ABUNDANCE OF SAN JOAQUIN KIT FOX 
BRIAN DENNIS,1 Department of Fish and Wildlife Resources and Division of Statistics, University of Idaho, Moscow, ID 83844, 

USA 
MARK R. M. OTTEN,2 Endangered Species Research Program, Naval Petroleum Reserves in California, P. 0. Box 178, Tupman, 

CA 93276, USA 

Abstract: We analyzed time-series abundances of San Joaquin kit fox estimated during 1983-95 on the Naval 
Petroleum Reserves in California (NPRC). For the analysis, we modified a model of density-dependent, sto- 
chastic population growth to include the lagged effects of a weather covariate (vegetation growing season 
rainfall). Without the covariate in the model, a statistical test failed to detect significant density dependence 
in fluctuating kit fox abundances. However, when the covariate was added, strong density dependence was 
detected. According to an information-theoretic model-selection index, the model with both density depen- 
dence and rainfall is far superior to the models that result from deleting one or more of these factors. The 2- 
year time lag in the response of kit fox abundances to changes in rainfall is consistent with biological expec- 
tations of how rainfall affects habitat carrying capacity for kit fox. An additional covariate, a coyote abundance 
index, failed to improve the model. A population viability analysis (PVA) performed with the combined density 
dependence-rainfall model suggests that the San Joaquin kit fox on NPRC could face a risk of up to 52% of 
falling to low levels within 20 years. 
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Key words: AIC, BIC, bootstrapping, California grassland, carrying capacity, density dependence, ecological 
time series, kangaroo rat, kit fox, logistic model, population viability analysis, stochastic population model, SIC, 
Vulpes macrotis mutica. 

Time-series statistical methods for wildlife 
ecology are maturing. New approaches convert 
deterministic, biologically-based population 
models into stochastic models in order to ac- 
count for the unpredictable variability present 
in animal populations (Dennis et al. 1995). The 
population models used as the bases for sto- 
chastic models include exponential growth 
(Dennis et al. 1991), density-dependent growth 
(Turchin and Taylor 1992, Turchin 1993, Den- 
nis and Taper 1994, Saitoh et al. 1997, Fryxell 
et al. 1998, Zeng et al. 1998), stage-structured 
models (Dennis et al. 1995, 1997), models of 
multiple populations varying spatially (Bjorn- 
stad et al. 1995, Stenseth et al. 1996, Dennis et 
al. 1998), and models of multiple species (Car- 
penter et al. 1994, Pascual and Kareiva 1996, 
Stenseth et al. 1997, Fryxell et al. 1999). The 
stochastic components serve as connections be- 
tween models and time-series data and allow for 
statistical inferences such as parameter estima- 
tion, hypothesis testing, model selection, model 
evaluation, and forecasting. 

1 E-mail: brian@uidaho.edu 
2 Present address: Department of Biology, Ray- 

mond Walters College, 9555 Plainfield Road, Blue 
Ash, OH 45236, USA. 

From a management standpoint, one of the 
more potentially useful developments in time- 
series modeling is the incorporation of environ- 
mental covariates into the models (Marmorek 
1996, Rotella et al. 1996, Rothery et al. 1997). 
Environmental covariates can be weather or cli- 
mate conditions (Turchin and Ostfeld 1997; 
Zhou et al. 1997; Forchhammer et al. 1998; 
Lewellen and Vessey 1998a,b; Post and Sten- 
seth 1999), or even other species (Fryxell et al. 
1999). If environmental covariates are part of 
the data base, they can be added and tested as 
adjustments to model parameters in order to 
improve site- and year-specific population fore- 
casts. 

The endangered population of San Joaquin 
kit foxes (Vulpes macrotis mutica) inhabiting the 
NPRC poses challenging problems for time-se- 
ries analysis. Estimates of abundance extend 
back only to 1983 and reveal erratic, wide fluc- 
tuations in population size. Immense variability 
of demographic parameters in the population is 
associated with variable environmental condi- 
tions (Otten and Cypher 1998). The kit fox 
feeds primarily on small mammalian herbivores 
(Cypher and Spencer 1998) that depend on 
vegetation (Beatley 1969), suggesting kit fox 
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abundance may reflect rainfall amounts during 
the growing season 2 years earlier. Appropriate 
statistical analyses for examining this hypothesis 
must account for the time-series nature of the 
kit fox data as well as the main biological fea- 
tures of kit fox population growth. Due to the 
short length of the series, however, complex 
analysis approaches are severely constrained by 
the number of parameters that can be estimat- 
ed. 

We analyzed the relationship of rainfall and 
kit fox abundance by modifying a simple sto- 
chastic model of density-dependent population 
growth to include covariates. The base model 
for the kit fox population was the stochastic 
Ricker-logistic model used by Dennis and Ta- 
per (1994) to construct a statistical test of den- 
sity dependence. The carrying capacity of the 
modified model fluctuates from year to year 
with covariate levels, the main covariate of in- 
terest being growing season rainfall (2-yr lag). 

We examined other covariates with this mod- 
eling approach. Among the covariates, coyote 
abundance was of particular interest. Coyotes 
are known to compete with kit foxes as well as 
to kill foxes opportunistically (White and Gar- 
rott 1997, Cypher and Spencer 1998), although 
coyote control as a means for enhancing the kit 
fox population on NPRC was shown to be in- 
effective (Cypher and Scrivner 1992). A coyote 
abundance index was incorporated in the model 
jointly with growing season rainfall, in order to 
test whether coyotes had any detectable effect 
on population fluctuations of kit foxes. Addi- 
tional covariates analyzed included alternative 
lags for growing season precipitation, calendar 
year rainfall (various lags), and 2-year lag in fox 
abundance (second-order density dependence). 

We hypothesized that combining the effects 
of density dependence and growing season rain- 
fall in one model would account for a large 
amount of variability in kit fox abundances. Un- 
der the hypothesis, a model with both factors 
included should describe the data better than 
models with either density dependence alone or 
rainfall alone. Furthermore, model selection 
and model evaluation analyses should indicate 
that the joint density dependence-rainfall mod- 
el is not overparameterized and that it ade- 
quately describes the statistical properties of the 
noise in the system. Finally, under the hypoth- 
esis we would not expect the additional covar- 
iates, including coyote abundance, to improve 
the model. 

With the best model that emerged from the 
analyses, we conducted a preliminary PVA for 
the San Joaquin kit fox population on NPRC. 
Two conceptual problems with PVA in this set- 
ting arose: first, how to incorporate the weather 
covariate information, and second, how to esti- 
mate the uncertainty in the risk assessments. 
We adapted some bootstrapping approaches to 
handle both problems. 

In this paper, our purpose is twofold. First, 
we thoroughly describe the stochastic model 
and its associated statistical methods. Although 
the methods are not currently available as a part 
of any statistical or ecological computer pack- 
ages, the necessary calculations are fairly simple 
and easily programmed. Second, through our 
kit fox analysis we attempt to provide a com- 
pletely worked example of how the model 
might be helpful to wildlife managers. We dis- 
cuss the biological interpretation of the model 
and the management ramifications of the anal- 
ysis results. We believe these novel statistical 
methods could find useful applications in many 
wildlife management problems. 

STUDY AREA 
The time-series data consist of annual esti- 

mates of abundance of San Joaquin kit fox and 
were collected within a 135-km2 study area on 
the NPRC from 1983-95. The NPRC is located 
approximately 40 km west-southwest of Ba- 
kersfield, California and is composed of well- 
developed oil fields interspersed with areas of 
relatively undeveloped grassland-shrub habitat. 
The study area encompassed approximately the 
southern two-thirds of NPRC. The vegetative 
community on NPRC is broadly described as 
valley grassland (Heady 1977) and specifically 
described as belonging to the Allscale Series 
(Sawyer and Keeler-Wolf 1995). Vegetative 
compositions are dominated by annual grasses 
and forbs. Xerophytic shrubs are locally com- 
mon, but trees are rare (Heady 1977). 

The climate of the NPRC region is Mediter- 
ranean in type and is characterized by hot, dry 
summers and mild, wet winters (Major 1977). 
Mean annual rainfall is 15.1 cm (National Cli- 
matic Data Center 1996). Over the years of this 
study (1983 through 1995), annual rainfall var- 
ied between 7.3 and 27.6 cm (15.9 ? 1.8 cm, x 
+ SE, n = 13). Most rainfall on NPRC occurs 
from 1 October to 31 March (defined as annual 
growing season rainfall) and coincides with the 
primary vegetative growing season. We there- 
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Table 1. Maximum likelihood estimates (a, B, 6, 62) of parameters in the density dependence-rainfall model (Eq. 1), generalized 
RF, and Schwarz information criterion (SIC) for 4 model hypotheses (H,) fitted to the San Joaquin kit fox data. The population 
estimates (and SE) for the winters of 1983-84 to 1995-96 were 117 (11.5), 220 (16.6), 161 (15.9), 164 (14.3), 135 (13.4), 166 
(14.7), 131 (13.9), 117 (13.0), 46 (9.2), 88 (9.2), 196 (15.9), 363 (23.5), and 133 (11.0); the precipitation levels (cm) for the 
growing seasons of 1982-83 to 1993-94 were 22.0, 8.6, 8.7, 15.2, 12.9, 10.2, 8.4, 5.9, 14.8, 17.6, 22.5, and 11.3, respectively. 

Hypothesis a b C 6.2 R2 SIC 

H0 0.01068 - - 0.3305 0.00 25.7 
H1 0.7408 -0.004647 - 0.2055 0.09 22.5 
H2 -1.089 - 0.08346 0.1446 0.23 18.3 
H3 -0.3607 -0.003835 0.07437 0.06165 0.82 10.6 

fore modeled precipitation effects on kit fox 
abundance using annual growing season rainfall 
rather than total annual rainfall. For the 12 
years 1982-83 through 1993-94, annual grow- 
ing season rainfall varied between 5.9 and 22.5 
cm (Table 1; overall mean of 13.1 ?+ 1.6 cm). 

METHODS 

Population Estimation 
Annual abundance estimates of San Joaquin 

kit fox were made as a part of a large study of 
population dynamics (Brian Cypher, NPRC En- 
dangered Species and Cultural Resources Pro- 
gram, unpublished data). Adult and yearling 
foxes were captured each winter (Nov, Dec, 
Jan) between 1983-95 to estimate annual abun- 
dances and to determine annual distribution 
patterns. One wire-mesh model 208 Tomahawk 
live-trap (Tomahawk, Tomahawk, Wisconsin, 
USA) was placed within each quarter section of 
the study area and operated for 4 consecutive 
nights. Trap locations were consistent between 
years, differing only when a particular location 
was destroyed (e.g., road construction) or be- 
came unusable or unsafe (e.g., presence of feral 
dogs). In these instances, new trap locations 
were established as close as possible to previous 
locations while minimizing the risk to captured 
animals. Captured kit foxes were marked with 
individually numbered eartags, sexed, aged, 
weighed, measured, and released at the capture 
location. 

Annual abundances (Table 1) were estimated 
from capture-recapture histories using program 
CAPTURE (Otis et al. 1978, Rexstad and Burn- 
ham 1991). Model selection criteria in CAP- 
TURE indicated that models Mo (equal catch- 
ability model) and Mbh (heterogeneity and trap 
response model) were best. To aid in model se- 
lection, Pollock et al. (1990) recommended uti- 
lizing pertinent biological information, if such 
information is available. Previous research on 

NPRC suggests that kit foxes exhibit both het- 
erogeneity in trapability and a response to trap- 
ping and that model Mbh is probably the most 
appropriate (Harris 1987). As a result, we se- 
lected the jackknife-type estimator of Pollock 
and Otto (1983) in program CAPTURE (model 
Mbh), which allows for individual capture prob- 
abilities and a trap response. 

Density-dependent-Rainfall Model 
All statistical methods used in this paper were 

based on a stochastic population growth model. 
The model was a discrete-time, stochastic logis- 
tic model (Dennis and Taper 1994) that we 
modified to incorporate weather as a covariate. 
The model can be written as: 

Nt = Nt_lexp(a + bNt-I + cWt-2 + fZt), (1) 

where Nt is kit fox population abundance at 
time t (yr: t = 0, 1, 2, ..., 12; each yr begins 
in Oct, so that yr 0 includes observations re- 
corded between Oct 1983 and Sep 1984), Wt is 
the annual growing season rainfall (cm) for time 
t, and Zt is normal (0,1) noise (with Z1, Z2, . .. 
uncorrelated). Also, a, b, c, and (r2 are unknown 
parameters (u > 0) to be estimated from the 
data. Under this model, the population abun- 
dances Nt (t = 1, 2, . . .) are random variables 
that are correlated through time, and No is 
fixed. The random variables Zt (t = 1, 2, . . .) 
represent unpredictable fluctuations in growth 
rate (on the logarithmic scale) over and above 
fluctuations accounted for by density depen- 
dence and precipitation. 

Various models are contained in Eq. 1 as spe- 
cial cases. If a = 0, c = 0, and b = 0, Eq. 1 is 
the simple deterministic model of exponential 
increase-decrease (in discrete time). If or = 0 
and c = 0, Eq. 1 is the Ricker (1954) discrete- 
time logistic model. When c = 0 and b = 0, 
Eq. 1 is the stochastic model of exponential in- 
crease-decrease (in discrete time) discussed by 
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Dennis et al. (1991). With c = 0, Eq. I is the 
stochastic discrete-time logistic model proposed 
by Dennis and Taper (1994) as a base model for 
testing density dependence. 

Four biologically interesting cases of Eq. 1 
were fitted to the data as separate hypotheses: 
Ho: b = 0 and c = 0 (no density dependence, 
no rainfall effect); Hi: b $ 0 and c = 0 (density 
dependence, no rainfall effect); H2: b = 0 and 
c # 0 (no density dependence, rainfall effect); 
and H3: b # 0 and c # 0 (density dependence, 
rainfall effect). 

We calculated maximum likelihood (ML) es- 
timates of the unknown parameters in Eq. 1 for 
all 4 hypotheses, using the time-series abun- 
dance estimates of kit foxes in conjunction with 
the rainfall data. The ML estimates for the 
model are identical to "conditional least 
squares" estimates (Dennis and Taper 1994, 
Dennis et al. 1995) and are easily calculated 
with most ordinary regression packages as fol- 
lows. Let no, n1, n2, . .., nq be the recorded 
population abundances (the time series data, 
Table 1). Lower case denotes that they are fixed 
quantities (outcomes) and not random. Also, let 

Yl = ln(nl/no), Y2 = ln(n2/nl) ... , q 
= ln(nq/ 

nq i) be the yearly population changes on the 
logarithmic scale, and let w i, wo, wl1, . . , wq-2 
be the recorded (and lagged) rainfall levels. For 
the full model (H3), a regression is performed 
with the data triples (yi, no, w -), (y2, ni, w0o), 

. .. (yq, nq-1, wq 2), in which the y's are used 
as the dependent variable and the n's and w's 
are the predictor variables. The resultant coef- 
ficients in the regression equation are the ML 
point estimates of a (intercept), b, and c. The 
ML point estimate of U2 is the error sum of 

squares (sum of squared model residuals) divid- 
ed by q. For hypotheses H2, Hi, and Ho, the 
corresponding predictor variables are dropped 
from the regressions. 

While valid point estimates are easily ob- 
tained with regression packages (e.g., SAS [SAS 
Institute 1990], or SYSTAT [SPSS 1996]), as- 
sociated confidence intervals for the parameters 
printed by regression packages are not valid for 
hypotheses H3 and H1 (in which the n's are used 
as a predictor variable). Printed hypothesis tests 
for whether the parameters are nonzero in H3 
or Hi are also not valid. This is because the 
growth increments (y's) have serial dependence 
in the density-dependent models, which contra- 
dicts the distributional assumptions of regres- 
sion (Dennis and Taper 1994). 

Density-dependent-Rainfall-Coyote Model 
We performed additional analyses to explore 

the possible effects of other covariates. In par- 
ticular, a coyote abundance index based on 
scent-station visits had been recorded in March 
of each year since 1985 in a monitoring survey 
of NPRC (Cypher and Scrivner 1992; Table 2). 
If coyotes affect fox survival (White and Garrott 
1997), the coyote abundance recorded in March 
of year t - 1 would be expected to have a dis- 
cernable effect on fox abundance observed in 
November-December of year t (recall that 
years begin on Oct 1). The coyote abundance 
index for year t - 1 was entered in the model 
as an additional covariate. The full model was 

Nt = Nt-lexp(a + bNt-i + ClWt_2 

+ C2Vt_1 + rZt), (2) 

where V, is the coyote abundance index at time 
t, and cl, c2 are constants. The time series for 
this analysis was reduced in length by 1 obser- 
vation because the coyote index survey began 
in 1985. Thus, only 11 observations (11 time 
steps from Nt-_ to Nt) were available for fitting 
Eq. 2. 

Eight submodels of Eq. 2 were fitted as sep- 
arate hypotheses, in which the constants b, cl, 
and c2 were fixed at zero singly and in combi- 
nations: Ho': b = 0, cl = 0, = 0; Hi': b # 0, 
c = 0, c2 = 0; H2': b = 0, ci # 0, c2 = 0; H3': 
b = 0, ci = 0, c2 # 0; H4': b = 0, ci : 0, c2 # 

0; Hs': b 7 0, cl = 0, c2 # 0; H6': b # 0, cl 7# 
0, C2 = 0; H7': b # 0, Cl = 0, c2 # 0. 

Other covariates analyzed were calendar year 
rainfall (Jan-Dec) with various lags, other lags 
of growing season rainfall, and 2-year lagged fox 
abundance (second-order density dependence). 
These models were investigated by fitting Eq. 
1 using the covariate of interest in place of 
Wt-2. 

Hypothesis Tests 
We performed statistical hypothesis tests by 

parametric bootstrapping (Dennis ahd Taper 
1994, Manly 1997, Rothery et al. 1997). The 
procedure is straightforward but numerically in- 
tensive. We describe the steps for testing Hi 
(null) vs. Hj (alternative); consult Dennis and 
Taper (1994) and Manley (1997) for further de- 
tails. Step-by-step instructions are as follows. (1) 
Obtain ML parameter estimates for both the 
null model and the alternative model. (2) Cal- 
culate the t-ratio statistic for the particular slope 
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coefficient being tested. The essence of the hy- 
pothesis testing problem in density-dependence 
models is that the t-ratio statistic does not have 
a Student's t distribution, and therefore t-tables 
cannot be consulted for P-values or critical per- 
centiles. The t-ratio is the likelihood ratio sta- 
tistic for testing Hi vs. Hj; its distribution when 
the null hypothesis is true is estimated by sim- 
ulation in the subsequent steps. (3) Simulate B 
time series (we used B = 10,000) of population 
abundances from the null hypothesis model, us- 
ing the null hypothesis ML parameter esti- 
mates. Each time series should have the same 
number of observations as the original data and 
should start at the same initial population value 
of the original data. The values of the weather 
covariate are not simulated, but are entered in 
the simulation model as fixed constants. (4) Re- 
fit (i.e., calculate ML estimates via regression) 
both Hi and Hj to each of the simulated time 
series. (5) Calculate the t-ratio for each of the 
simulated time series, yielding B simulated val- 
ues of the t-ratio (one can also retain the B sets 
of parameters for the null hypothesis for cal- 
culating confidence intervals, CIs). (6) The pro- 
portion of the B simulated t-ratios that are more 
extreme than the original t-ratio from the data 
is the estimated P-value for the test. 

Adapting a regression package to do these 
bootstrapping calculations requires some pro- 
vision in the package for looping, such as a mac- 
ro language. Because the calculations involve 
repeated regressions (matrix inversions), use of 
a matrix programming language such as GAUSS 
(Aptech Systems 1993) or MATLAB (Math 
Works 1993) rather than a commercial statistics 
package greatly facilitates the bootstrapping 
process. 

Four statistical hypothesis tests were con- 
ducted for the density dependence-rainfall 
model (Eq. 1): Ho vs. HI, Ho vs. H2, H1 vs. H3, 
and H2 vs. H3. In each test, the null model is 
contained within the alternative model as a spe- 
cial case and is obtained by setting 1 parameter 
equal to zero. The bootstrap method for testing 
Ho vs. H1 is the principal topic of Dennis and 
Taper (1994). It was not necessary to bootstrap 
the test of Ho vs. H2, because the growth incre- 
ments (y's) are independent in the density-in- 
dependent models (Dennis et al. 1991), and the 
t-ratio has a Student's t distribution under Ho. 

Hypothesis tests were conducted among all 
pairs of submodels within the density depen- 
dence-rainfall-coyote model (Eq. 2) for which 

1 model was nested within the other and had 1 
less parameter (Ho' vs. Hi', H2', and H3'; Hi' 
vs. H5' and H6'; H2' vs. H4' and H6'; H3' vs. 
H4' and H5'; H4' vs. H7'; H5' vs. H7'; H6' vs. 
H7'). It was not necessary to bootstrap the tests 
that have b = 0 (no density dependence) in 
both null and alternative hypotheses, because 
the t-ratio has a Student's t distribution under 
the null hypothesis. 

Model Selection 

Choosing a model by pairwise-hypothesis 
testing among several candidate models can 
lead to ambigous results (a problem well-known 
in stepwise regression). We supplemented the 
hypothesis testing results with the Schwarz in- 
formation criterion (SIC, Schwarz 1978). The 
SIC is an information-theoretic, model-selec- 
tion index used to select the best model from a 
suite of models, and is an Akaike-style index 
(Sakamoto et al. 1986) based on the maximized 
log-likelihood, penalized by the number of pa- 
rameters estimated in the model. It has per- 
formed extremely well in extensive simulation 
studies of ecological time-series modeling 
(Hooten 1995). For a model hypothesis Hi con- 
tained in Eq. 1 or Eq. 2, the SIC is 

SICi = q[l + ln(2rr(i2)] + plnq, (3) 

where 6r,2 is the ML estimate of u2 under model 
Hi, and p is the number of parameters estimat- 
ed in model Hi (including the parameter (r2). 

The model with the lowest SIC is the best in 
the sense that the procedure selects in large 
samples the model closest to the true model 
(closest according to an information-theoretic 
measure of discrepancy between the fitted 
model and the true model; Sakamoto et al. 
1986, Bozdogan 1987). A rough guideline states 
that one will not notice much difference in 
quality of 2 models with SIC values differing by 
<2 (Sakamoto et al. 1986). The SIC is easily 
calculated from the information printed by re- 
gression packages. 

Overall goodness of fit for each model was 
measured with a generalized R2 value, defined as 

q > (nt - nt)2 
R2= 1 - t=l 

E (nt - /f)2 
t=l 

(4) 

where nt is the 1-step-ahead predicted value 
for nt (e.g., nt = nt -lexp(a + 1nt,i + cwt 2) for 
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model H3, Eq. 1), and n = S|=l nt is the sample 
mean of the observations (not including the ini- 
tial observation no). The measure compares the 
1-step-ahead predictions of the model with the 
predictions that result from using the sample 
mean as a predictor. It is possible for the value 
of R2 to be <0. A time series model can give 
worse predictions than the sample mean, and 
under such circumstances, a value of zero 
would be reported. The maximum R2 value is 1 
(perfect predictions). Because a high R2 value 
can be achieved by an over-parameterized mod- 
el, it should be interpreted in conjunction with 
a parameter penalty index such as SIC. When 
a parameter is added to a model, an increased 
R2 value should ideally be accompanied by a 
decreased SIC. 

The modeling approach used here is para- 
metric, and careful attention to model evalua- 
tion is essential (Dennis et al. 1991, Dennis and 
Taper 1994). For nonlinear time-series models, 
diagnostic techniques focus on the residuals 
(Tong 1990). We scrutinized the residuals of the 
best-fitting model with diagnostic plots and tests 
for normality and autocorrelation. Verifying that 
the model is an adequate description of the sto- 
chastic mechanism that generated the data is 
particularly important if the model is to be used 
for forecasting or PVA. 

Population Viability Analysis 
We conducted a PVA using the density de- 

pendence-rainfall model, which emerged as the 
best model from the hypothesis testing and 
model selection analyses. A PVA essentially con- 
sists of simulating a stochastic model and esti- 
mating first-passage properties, such as the me- 
dian time to reach a low abundance level or the 
probability of reaching that level within a fixed 
time (Dennis et al. 1991). However, as pointed 
out by Dennis et al. (1991), a serious mistake 
made in many PVA exercises is the failure to 

propagate the errors of parameter estimation in 
the estimates of first-passage properties. Prop- 
agation of these errors can be accomplished 
with bootstrapping (Dennis et al. 1991). 

We refitted the best model to 2,000 sets of 
parametrically bootstrapped time series. With 
each set of parameters, we then estimated the 
probability that the San Joaquin kit fox popu- 
lation will decrease to ne individuals within t 
years, by simulating future trajectories of pop- 
ulation abundance. For each pair of values of 

ne and t, the resulting 2,000 sets of first-passage 

probabilities were used to form bootstrap CIs 
(Manly 1997). 

Simulating potential future population trajec- 
tories poses a problem with a covariate in the 
model. For instance, in the case of rainfall, the 
covariate values were fixed for parameter esti- 
mation, and inferences were conditioned on 
that particular realization of rainfall values. 
However, it is not possible to forecast what val- 
ues rainfall will take in the next 10 years in or- 
der to do a 10-year model simulation. Instead, 
we used the existing rainfall values as an esti- 
mate of the stationary probability distribution 
from which rainfall values arise. Local yearly 
precipitation typically has little or no autocor- 
relation and is routinely modeled with a skewed 
distribution such as a gamma (Rice 1995). We 
bootstrapped the rainfall values, that is, for each 
year of a simulation, we selected a value at ran- 
dom, with replacement, from the recorded rain- 
fall values in the data set. Thus, our PVA with 
the density-dependence-rainfall model (Eq. 1) 
is based on the assumption that the variability 
patterns in rainfall characteristic of the last 2 
decades will continue. 

RESULTS 

Density-dependent-Rainfall Model 

The 4 fitted submodels of Eq. 1 yielded 4 sets 
of ML parameter estimates (Table 1). Note that 
the models with precipitation included (H2 and 

H3) had negative values estimated for the in- 
tercept parameter a. The precipitation covaria- 
te, however, serves as a yearly intercept adjus- 
tor. For these models, the average intercept 
prevailing over the years of the study can be 
estimated by a + cw, where tw (=13.175 cm) is 
the sample average of the covariate values. For 
model H3, the estimated average intercept is 
0.6191. Recall that in the pure density-depen- 
dence model (Hi1), the value of -a/b gives the 
long-term equilibrium, or carrying capacity, of 
the deterministic logistic model component. 
The carrying capacity in model Hi can be es- 
timated by -a/b = 161.0. For model H3 the 
carrying capacity estimated using the average 
intercept is nearly identical in value: -(a + cw)/ 
/ = 161.4. Because H1 and H3 are stochastic 
models, these carrying capacities are interpret- 
ed as the estimated long-term values around 
which the population fluctuates. 

Hypothesis tests pointed to H3 as the overall 
best model among the 4 models considered. 
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Fig. 1. Estimates of San Joaquin kit fox abundances (solid 
circles, -SE) and 1-step-ahead predictions (open circles) from 
fitted model of density-dependent population growth with grow- 
ing season rainfall as a covariate. 

The tests rejected Ho in favor of H2 (T = 3.59, 
P = 0.005), rejected H2 in favor of H3 (T = 

4.58, P = 0.015), rejected Hi in favor of H3 (T 
= -3.48, P = 0.002), but failed to reject Ho in 
favor of H1 (T = -2.47, P = 0.139). In other 
words, adding rainfall alone to a density inde- 
pendent model is a significant improvement, 
while adding density dependence alone is not a 
significant improvement. However, the model 
with both rainfall and density dependence is a 
significant improvement over the models with 
either factor alone. Density dependence is thus 
detectable only after the rainfall covariate is 
added to the model. 

The SIC also points to H3 as the overall best 
model (Table 1). The model with density de- 
pendence alone (H1) is somewhat of an im- 
provement over the density-independent model 
(Ho), according to the SIC. The model with 
rainfall alone (H2) is a substantial improvement 
over Ho, and a definite improvement over H1, 
according to the SIC. The SIC for the the mod- 

el with both density dependence and rainfall 
(H3), however, is far lower than the SICs for 
the other models, indicating that the added pa- 
rameter improves model H3 substantially. 

Indeed, the 1-step predictions for model H3 
are close to the fox abundance estimates (Fig. 
1). The fit of the model is reflected in the high 
generalized R2 value of 0.82 (Table 1). While 
having too many parameters can produce such 
close fits, the SIC results indicate the model is 
not overparameterized. 

Model diagnostic procedures indicate that 
the residuals from model H3 are normal, ho- 
moscedastic, and uncorrelated. Residual plots 
(Fig. 2) show lack of variability patterns and ap- 
proximate normality. The Lin-Mudholkar test 
for normality (Tong 1990) indicates that the 
normal distribution is an acceptable model for 
the residuals (Z = 0.52, P = 0.603). Tests reveal 
no significant first- or second-order autocorre- 
lation (Tong 1990) in the residuals (Z1 = p^Vq 

1 -1.02, P = 0.306; Z2 = p2Vqq = 0.96, P 
0.337; pi and P2 are the first- and second-order 
sample autocorrelations). Overall, diagnostic re- 
sults suggest that the model describes the pat- 
terns of stochastic variability in the data ex- 
tremely well. 

Density-dependence-Rainfall-Coyote 
Model 

For the coyote covariate analysis, the 8 sub- 
models of Eq. 2 yielded 8 sets of parameter 
estimates (Table 2). Model hypotheses ranged 
in complexity from density independence, no 
covariates (Ho0', Table 2), to density dependence 
plus 2 covariates (H7', Table 2). 

The hypothesis tests provided no support for 
the presence of a detectable coyote influence in 
the kit fox time series. In all cases in which coy- 

Table 2. Maximum likelihood estimates (a, 6, et, 4, &2) of parameters in the density dependence-rainfall-coyote model (Eq. 
2), and Schwarz information criterion (SIC) for 7 model hypotheses (Hi') fitted to the San Joaquin kit fox data, with growing 
season rainfall (2-yr lag) and coyote abundance index (1-yr lag) as covariates (coefficients c, and c2, respectively). The coyote 
abundance index values for March 1985 to March 1995 were 110.5, 135.0, 106.06, 45.0, 36.27, 30.15, 25.13, 21.86, 68.42, 
100.5, and 116.16, respectively. 

Hypothesis a b Cl c2 a2 R2 SIC 

Ho' -0.04575 - - 0.3223 0.00 23.6 

Hi' 0.6625 -0.004360 - - 0.2055 0.11 21.0 
H2' -1.137 0.08819 - 0.1559 0.12 18.0 
H3' -0.06824 - - -0.001577 0.3183 0.00 25.8 
H4' -0.9531 - 0.09333 -0.003424 0.1375 0.40 19.0 
H5' 0.5396 -0.006478 - 0.006462 0.1653 0.19 21.0 
H6' -0.4255 -0.003924 0.08223 - 0.06206 0.84 10.2 
H7' -0.4019 -0.004969 0.07601 0.003085 0.05372 0.85 11.0 

n ....... 
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Fig. 2. Model residuals plotted against predicte 
population sizes (a), and normal quantile-quantile 
residuals (b). 

ote index was in the alternative mod 
in the null, the test failed to reject the 
el (Ho0' vs H3', T = -0.34, P = 0.7, 

H5', T = 1.39, P = 0.272; H2' vs 
-1.04, P = 0.329; H6' vs H7', T = 

0.218). In all cases in which rainfall 
alternative model but not in the null 
lihood-ratio test rejected the null mo( 
H2', T = 3.10, P = 0.013; Hi' vs H6', 
P = 0.004; H3' vs H4', T = 3.24, P = 
vs H6', T = 3.81, P = 0.002). In a 
which density dependence was added 
el that already contained rainfall, ti 
jected the null hypothesis (H2' vs 
-3.48, P = 0.016; H4' vs H7', T = - 

0.001). In all cases in which density d< 
was added to a model that did not co 
fall, the test failed to reject the null 

(Ho0' vs Hi', T = -2.26, P = 0.173; 1 
T = 2.72, P = 0.146). These results 
tent with the previous hypothesis te 

density-dependence-rainfall mode 

growing season precipitation (2-yr la 
tected as an important factor in popu 

tuations, and density dependence was detected 
only when precipitation is already in the model. 

The model with the smallest SIC included 
density dependence and growing season precip- 
itation (2-yr lag), but not coyote abundance 
(H6', Table 2). This model is identical to model 
H3 in the previous growing season precipitation 
analysis (Table 1), except that H6' is fitted to 1 
less observation. One model with coyote abun- 

6 5.8 6.o dance included (H7', Table 2) had an SIC nearly 
as low but not as low as that of H6', indicating 
that there is no real advantage of adding coyotes 
to the model once growing season precipitation 
is included. In fact, the sign of the estimated 
coefficient c2 in model H7' is positive (Table 2); 
if coyotes had a detrimental effect on survival, 
that coefficient would be expected to be nega- 
tive. 

Other covariates analyzed (in place of W_-2 
in Eq. 1), including calendar year precipitation 
(various lags), other lags of growing season pre- 
cipitation, and 2-year lag in fox abundance (sec- 

, ond-order density dependence), did not im- 
1 2 prove the model. For reasons of space, we omit 

the numerical results; the SIC values were all 
Ad logarithmic substantially higher than that of model H3 (Ta- 
plot ofmode ble 1). We conclude that model H3 (Table 1), 

containing growing season precipitation (2-yr 
lag) and density dependence, gives the best de- 
scription of the data among all models consid- 

el but not ered. 
null mod- 
42; HI' vs Population Viability Analysis 
H'4 T = The PVA was conducted with model H3, us- 
1.04, P = 

ing the parameter values from Table 1. The 
was in the PVA estimated a 19% chance that the popula- 
1, the like- tion will fall from 133 individuals (recorded in 
del (Ho0' vs winter of 1995-96) to <50 within the next 20 
T = 4.30, years (Table 3). While the chance that the pop- 

0.012; H5' ulation will fall to 50 individuals within 5 years 
11 cases in was estimated at only 3%, the estimated chance 
I to a mod- increased to 15% within 10 years. The 95% CIs 
ie test re- for these chances revealed a high level of im- 
H6', T = precision for time frames >5 years (Table 3). 

-3.30, P < The chance that the population declines to 50 
ependence individuals within 20 years could be as high as 
)ntain rain- 52%, according to the bootstrap CI. 
hypothesis When the lower threshold population was set 
H3' vs H5', at 30, the estimated chances of the population 
are consis- attaining the threshold were reduced consider- 
,sts for the ably (Table 3). The chance of attaining 30 in- 
J1 in that dividuals within 20 years was just 3%, although 
lg) was de- the 95% CI suggests that the true value could 
Llation fluc- be as high as 12%. 

I S 
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Table 3. Estimated probability (and approximate 95% Cl) that 
the San Joaquin kit fox population will decrease to no individ- 
uals within t yr, starting in 1995 from a population of 133 in- 
dividuals. 

Estimated 
ne t probability 95% CI 

50 5 0.03 <0.01-0.11 
50 10 0.15 0.01-0.44 
50 15 0.15 0.01-0.40 
50 20 0.19 0.01-0.52 
30 5 <0.01 0.00-0.01 
30 10 0.02 0.00-0.10 
30 15 0.02 0.00-0.08 
30 20 0.03 0.00-0.12 

DISCUSSION 
Our finding that growing season rainfall af- 

fects the abundance of kit foxes 2 years later is 
consistent with current knowledge of their pop- 
ulation ecology. The diet of kit foxes consists 
primarily of small rodents, particularly kangaroo 
rats (Dipodomys spp.), and of leporids (Laugh- 
rin 1970, White and Ralls 1993, Cypher and 
Spencer 1998). These species, in turn, exist 
principally on a diet of seeds and herbaceous 
plant parts. In arid regions, primary plant pro- 
duction, and ultimately rodent and leporid 
abundance, is strongly influenced by annual 
rainfall quantities and patterns (Beatley 1969, 
Brown and Munger 1985). In these systems, 
vegetation responds rapidly to altered precipi- 
tation regimes. Rodent and leporid populations, 
however, may take up to a year to exhibit a sig- 
nificant numerical response to variable rainfall. 
For example, to maximize persistence during 
periods of drought, many heteromyid (kangaroo 
rats, pocket mice) species express behaviors that 
promote adult survival in lieu of fecundity 
(Brown and Harney 1993). As a result, these 
populations do not typically explode immediate- 
ly after the onset of more favorable environ- 
mental conditions. 

San Joaquin kit fox populations appear to be 
regulated primarily by prey availability (Cypher 
and Scrivner 1992, White and Garrott 1997), 
expressed chiefly as variation in annual adult re- 
productive success and survival (White and 
Ralls 1993, White et al. 1996). Prey availability 
(habitat carrying capacity), in turn, varies in re- 
lation to rainfall. Because fox populations are 
separated from the direct effect of precipita- 
tion, however, the primary rainfall effects on fox 
abundance are noticeably postponed. Along 
with the lagged numerical response of prey, the 

monestrous fox reproductive cycle also contrib- 
utes to the delay. Fox breeding occurs primarily 
in December and parturition occurs in Febru- 
ary or March (McGrew 1979). 

Thus, the relative timing of the vegetative 
growing season (Oct-Mar), subsequent prey re- 
sponses, and the reproductive cycle of kit foxes 
means that numerical responses by fox popula- 
tions to fluctuating rainfall is delayed by up to 
2 years (White et al. 1996). Such a combination 
of first-order density dependence (dependence 
of Nt on Nt-1), in which the prevailing habitat 
carrying capacity (prey abundance) changes an- 
nually in relation to the growing season precip- 
itation in the previous year (time t - 2), is the 
central feature of our model. 

Our finding that coyote abundance did not 
significantly affect fox abundances is consistent 
with earlier studies (Cypher and Scrivner 1992, 
White and Garrot 1997). While it is unclear 
whether coyote-related mortality is additive or 
compensatory, it does not appear to be a major 
regulatory factor for kit fox populations. An 
analysis of the efficacy of coyote control on 
NPRC indicated that, at the intensity of control 
applied, reductions in coyote density did not 
lead to an increase in kit fox abundance (Cy- 
pher and Scrivner 1992). White and Garrott 
(1997) suggest that while coyotes may be able 
to regulate kit fox populations of low to mod- 
erate density, prey abundance and spacing pat- 
terns are probably the major factors influencing 
fox population dynamics. 

The wide CIs for the population risk esti- 
mates (Table 3) are characteristic of PVA, a fact 
not widely acknowledged in the PVA literature 
or in endangered species management. Given 
that there are only 12 observations (time steps) 
in the data set, the CIs are actually smaller than 
expected. Dennis et al. (1991) stressed the im- 
portance of estimating the uncertainty in the 
point estimates of risk, and noted that such un- 
certainty will typically be large. These ideas 
were reemphasized recently by Ludwig (1999). 
If preserving the population is an important 
goal, then the proper interpretation of the risk 
estimates for the San Joaquin kit fox is that the 
possibility that the fox population is at high risk 
cannot be ruled out. 

As is the case with most covariate analyses, 
the model parameter estimates are conditional 
on the particular realization of the covariate 
(rainfall values). Rainfall is a stochastic process, 
and model projections must somehow incorpo- 
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rate the stochasticity of rainfall. The bootstrap- 
ping method we used for the PVA assumes that 
the rainfall values originate from a stationary 
probability distribution, and that there is little 
or no autocorrelation of rainfall from year to 
year. Under such assumptions, the empirical 
distribution function of rainfall values is a sta- 
tistically consistent estimate of the stationary 
cumulative distribution function, and resam- 
pling the values themselves is akin to sampling 
out of the estimated rainfall stationary distri- 
bution. 

The stationary distribution model of local 
rainfall is used reliably and routinely in hydrol- 
ogy, agriculture, and meteorology; nonetheless, 
the PVA should be interpreted cautiously. Long- 
term climate change could cause the mean, var- 
iance, or autocorrelation of the rainfall to 
change through time, and such possibility of 
change is not accounted for in the model. The 
PVA simply projects past system variability pat- 
terns into the future. 

Shenk et al. (1998) criticized ecological time- 
series models, and density-dependence hypoth- 
esis tests in particular, for failing to account for 
sampling variability in estimates of population 
abundances. They simulated density-depen- 
dence tests by generating time-series abun- 
dances with sampling noise added that had a 
constant coefficient of variation. However, the 
kit fox abundance estimates do not conform to 
the sampling noise model of Shenk et al. (1998). 
The kit fox estimates had sampling coefficients 
of variation that tended to decrease with in- 
creasing population abundance (Fig. 1, Table 
1), which is a characteristic of most mark-re- 
capture models (Otis et al. 1978). The decreas- 
ing coefficient of variation (sampling variance 
proportional to Nt) conforms to the sampling 
variation simulations of Dennis and Taper 
(1994); their simulations suggested that the size 
of the bootstrap density dependence test re- 
mains near the nominal value of 0.05 with mod- 
erate amounts of sampling variability. The co- 
efficients of variation for the kit fox estimates 
averaged around 10% (range from 6.5 to 
19.9%). Shenk et al. (1998) noted that the den- 
sity dependence test had statistical performance 
problems under their sampling model at coef- 
ficients of variation ranging from 30 to 100%, 
at which levels it is questionable whether pop- 
ulation monitoring is worthwhile. 

Also, a well-known property in time-series 
models is that sampling variability tends to in- 

duce autocorrelation in the noise (Walker 
1960). In practice, lack of autocorrelation in the 
residuals can be taken to indicate that sampling 
error is not an important source of variability, 
provided the model for population abundance 
is an adequate description of the population 
growth process. We point out that no significant 
first- or second-order autocorrelation was de- 
tected in the residuals for the density depen- 
dent-rainfall model for kit fox abundances. 

In the 1950's, ecologists launched a durable 
debate on the relative importance of density- 
dependent and density-independent factors in 
population regulation (Biological Laboratory 
1957). The intensity of the debate was fueled 
by a presumption that regulation is primarily 
one or the other. Strong (1986) called for a 
combined approach in which density-depen- 
dence analyses would incorporate environmen- 
tal covariates or contingent variables. In our kit 
fox model, both density-dependent and density- 
independent factors contribute to determining 
population size. Carrying capacity in the model 
is determined principally by growing season 
rainfall, which fluctuates considerably from year 
to year. The long-term average carrying capacity 
of 161 foxes is just an estimated central value 
of a stationary probability distribution for pop- 
ulation sizes; yearly departures from that central 
value can be, and have been, substantial. Yearly 
carrying capacity fluctuates so much that den- 

sity dependence was barely detectable in the 
time series of population abundances. The re- 
sult was a form of "density vagueness" in the 
time series (Strong 1986). A model with density 
dependence alone was not adequately predic- 
tive, nor was a model with rainfall alone. In- 
stead, the model that blended both types of fac- 
tors gave a far superior description of the data. 

MANAGEMENT IMPLICATIONS 

The model developed here should help man- 
agers to moderate the risk faced by San Joaquin 
kit fox populations from the effects of variable 
annual precipitation. With the 1-step-ahead 
forecasts, the model can provide a 1-year warn- 
ing of when the kit fox population is expected 
to become critically low. During such years, 
special measures for population protection and 
habitat enhancement, such as translocating an- 
imals, constructing artificial den sites in margin- 
al habitats, or providing supplemental foods, 
may merit serious consideration. 

Given the results of the PVA and the large 
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amount of variability displayed in the popula- 
tion since 1983, the long-term risk to the San 
Joaquin kit fox on NPRC must be regarded as 
potentially high. According to the PVA, there is 
a fair chance that the population could drop be- 
low 50 individuals in the short term (within 20 
yr). The short-term chance of dropping below 
30 individuals though is low according to the 
PVA. However, a level of 50 individuals might 
be low enough to subject the population to 
small population forces such as an Allee effect 
(Dennis 1989, Fowler and Baker 1991), demo- 
graphic variability (Lande 1998), or other forces 
contributing to the "extinction vortex" (Gilpin 
and Soule 1986). None of these forces are in- 
corporated in the model. 

If the objective of management policy is to 
maintain a viable fox population on NPRC, then 
such policy must accomodate the prospect that 
the present population might not be viable. This 
has important repercussions for range-wide 
conservation of the species, as lands on and ad- 
jacent to NPRC have been identified in recent 
recovery planning as supporting 1 of 3 core kit 
fox populations (U.S. Fish and Wildlife Service 
1998). Further population monitoring would 
improve the modeling and risk assessment and 
would help warn of stochastic population de- 
clines. 

The modeling approach described here con- 
sists of: (1) proposing multiple plausible hy- 
potheses about wildlife-environment relation- 
ships, (2) formulating the hypotheses as quan- 
titative influences on growth rates in stochastic 
population growth models, and (3) evaluating 
the models rigorously using time-series abun- 
dance data and nonlinear, time-series statistical 
methods. The approach has many potential uses 
for managing other wildlife species. Environ- 
mental covariates have important effects in nu- 
merous population systems, and using simple 
correlation analysis to detect those effects can 
be statistically inappropriate and can fail in the 
presence of complex ecological relationships. 
Weather variables, for example, affect wildlife 
populations in many indirect and direct ways. 
While direct effects of weather include imme- 
diate mortality from floods or freezing, indirect 
effects include weather-dependent food supply, 
weather-mediated events elsewhere in the food 
chain, weather-altered habitat, and weather-in- 
fluenced parasite loads. Understanding the var- 
iability of wildlife populations can be greatly 
aided by including explicit hypothesized effects 

of environmental covariates in biologically- 
based population models. 
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