Distance Estimation of Abundance:

Assumptions and Possible Sources of Bias

\qquad
\qquad
\qquad
\qquad
\qquad

General Approach

\qquad

- Density is homogeneous within the survey area \qquad
- Some individuals go undetected \qquad
- Probability of detection is related to distance from the observer \qquad
- If we can assume all individuals at distance $=0$ are \qquad detected, we can estimate the proportion that go undetected \qquad
\qquad

Distance Sampling: Point Counts

- Homogeneous density
\qquad
- Number in each ring increases due to \qquad increased area
- Density is the same in \qquad each ring \qquad
\qquad
\qquad

Distance Sampling: Line Transects

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Density Estimation:
Perfect Detection

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Abundance Estimation: Imperfect Detection

IF Actual $[g(0)]=1$
$P D=\frac{\int_{0}^{w} \operatorname{Actual}[g(x)]=\text { fitted }}{\int_{0}^{w} \operatorname{Perfect}[g(x)]=1 \times w}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Effects of Behavioral Changes

- What if proportion detected changes from year to year?
- Under what conditions will estimates be biased?
- How does the assumption that $\operatorname{Actual}[g(0)]=1$ fit in?

Assumptions for Detectability Scenarios

- Abund $=20 * 11=220$
- No change in true abundance between 2 surveys
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Survey 1	60	1	0.27	220
Survey 2	109	1	0.50	220

\qquad
\qquad
\qquad
\qquad
\qquad

Scenario 3

Results Scenario 3

Assumed	\# counted	$g(0)$	$P D$	Abund
Survey 1	42	1	0.27	154
Survey 2	60	1	0.27	220

Actual	\# counted	$g(0)$	$P D$	Abund
Survey 1	42	0.7	0.19	220
Survey 2	60	1	0.27	220

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Results Scenario 4

Assumed \# counted $\quad g(0) \quad$ PD \quad Abund

Results Summary

- Estimates are unbiased due to increased detectability IF Actual $[g(0)]=1$ for both surveys
- Estimates are biased low IF Actual[$g(0)]<1$

What Does This Mean for Trend Analysis

- IF Actual $[g(0)]<1$
- If probability-of-detection
at close distances is constant through time..
- If varies but around a
constant 'mean'..
Valid index

Invalidates trend

- If there is a systematic
bias over time.. analyses and must be accounted for

Correcting the Bias

- There is a relationship between the true number and the biased estimate IF Actual[$[(0)]$ is KNOWN

TrueAbund $=$ EstAbund $* 1 / \operatorname{Actual[}[g(0)]$

Estimating Actual[g(0)]

- Paired observer methods (Kissling and Garton 2006)
- Model the probability of detection at close distances based on environmental covariates

Kissling, M. L. and E. O. Garton. 2006. Estimating detection probability and density From point-count surveys: a combination of distance and double-observer sampling. The Auk 123:735-752.

