Distance Estimation of Abundance:

Assumptions and Possible Sources of Bias

General Approach

- Density is homogeneous within the survey area
- Some individuals go undetected
- Probability of detection is related to distance from the observer
- If we can assume all individuals at distance = 0 are detected, we can estimate the proportion that go undetected

Distance Sampling: Point Counts

Homogeneous density Number in each ring increases due to increased area

- *Density* is the same in each ring

Effects of Behavioral Changes

- What if proportion detected changes from year to year?
- Under what conditions will estimates be biased?
- How does the assumption that *Actual*[g(0)] = 1 fit in?

Hawaiian Akepa

- Freed et al. suggested increased detectability of stressed individuals
- Could bias high recent estimates of density

Results Scenario 3				
<u>Assumed</u>	# counted	$g(\theta)$	PD	Abund
Survey 1	42	1	0.27	154
Survey 2	60	1	0.27	220
Actual	# counted	$g(\theta)$	PD	Abund
Survey 1	42	0.7	0.19	220
Survey 2	60	1	0.27	220

Scenario 4

Increased detection

- more singing/calling - more movement
- Result
 - more detections increased detection at distance = 0

Results Scenario 4				
Assumed	# counted	g(0)	PD	Abund
Survey 1	42	1	0.27	154
Survey 2	85	1	0.39	220
Actual	# counted	g(0)	PD	Abund
Survey 1	42	0.7	0.19	220
Survey 2	85	1	0.39	220

Results Summary

- Estimates are unbiased due to increased detectability IF *Actual*[g(0)] = 1 for both surveys
- Estimates are biased low IF Actual[g(0)] < 1

What Does This Mean for Trend Analysis

• IF Actual[g(0)] < 1

- If probability-of-detection at close distances is constant through time...
- If varies but around a constant 'mean'...
- If there is a systematic bias over time...

Valid index

Valid index

Invalidates trend analyses and must be accounted for

Correcting the Bias

• There is a relationship between the true number and the *biased* estimate IF *Actual*[g(0)] is KNOWN

TrueAbund = EstAbund * 1/Actual[g(0)]

Estimating *Actual*[*g*(*0*)]

- Paired observer methods (Kissling and Garton 2006)
- Model the probability of detection at close distances based on environmental covariates

Kissling, M. L. and E. O. Garton. 2006. Estimating detection probability and density From point-count surveys: a combination of distance and double-observer sampling. The Auk 123:735-752.