

Okaloosa Darters... How are they doing?

ĥ

- Choctawhatchee Bay drainage in Florida
- Inhabit vegetated sand runs of clear creeks
- Listed as Endangered June 4, 1973
- Fish and Wildlife Service has recommended downlisting to Threatened
- How would you determine their status??

Population Growth Models		10000	
Model	Input Data*	Density Dependence	Type(s) of Noise
Exponential growth with observation error (EGOE)	continuous time	none	observation error
Exponential growth with process noise (EGPE)	continuous time	none	process noise
✓ Exponential growth state space model (EGSS)	continuous time	none	process noise and observation error
Gompertz density dependent (GOMP)	discrete time	R(t) = a · b*logN(t-1)	process noise
Ricker density dependent (RICK)	discrete time	$FI(t) = \mathbf{a} \cdot \mathbf{b}^* N(t \cdot 1)$	process noise
Theta-logistic density dependent (THET)	discrete time	$R(t) = a \cdot b^* N(t \cdot 1)^* theta$	process noise
odels with Environemental Covariates			

Model	AICc	DeltaAICc
Exponential	-1.953	0
Gompertz	2.21	4.19
Ricker	2.24	4.16
Theta-logistic	8.24	10.19

- breeds in closed-canopy woodlands, primarily Ashe juniper and oak
- declined due to habitat loss and fragmentation from clearing of juniper for urban expansion, agriculture, and commercial harvest

Recovery Credit System

- Fort Hood "buys" the conservation rights to habitat patches on private lands
- Unintentional loss of habitat on Fort Hood is "offset" by these purchases
- Golden-cheek metapopulation remains "unharmed"

How should off-post patches be valued?

The Model									
Stochastic, demographic-based, metapopulation projection model									
Stage ^a	S	Temporal Variance (S)	F ^b	Temporal Variance (F)					
HY	0.40	0.058	0	0					
SY	0.57	0.010	1.2	0.024					
ASY	0.57	0.010	1.3	0.006					

Important Drivers of Metapopulation Viability

However...

- Changing dispersal assumptions
- Changed conclusions, substantially!

Wolf Reintroduction to Northern Rockies

- What impact are wolves having on elk and deer populations in Idaho?
- What impact in future? decreasing elk and deer, stable numbers or oscillations?
- How answer?
 - Ask experts and check scientific literature
 - Gather important data
 - Synthesize data and test possibilities with a model

Why model predator-prey interactions?

• Models help us

- 1. Define our problem
- 2. Identify what might be important
- 3. Understand our data
- 4. Communicate and test that understanding
- 5. Make predictions

Modeling Wolf Effects

- What is important?
- What would determine their effect on elk and deer?
- Is there a theory of predator-prey interactions that will help us understand, predict and manage wolf predation on deer and elk?

Predicting effects of wolf reintroductions on ungulate populations: Comparing model predictions to observations for elk and wolves in Yellowstone.

- by Edward O. Garton¹, Douglas W. Smith², Bob Crabtree¹, Bruce Ackerman¹, and Gerry Wright¹
 1. Eich and Wildlife Date. University of Idaha. Massawur ID
- 1. Fish and Wildlife Dept., University of Idaho, Moscow, ID 83844,
 2. National Park Service, Vallowstone Center for
- 2. National Park Service, Yellowstone Center for Resources, P.O. Box 168, Yellowstone National Park, WY 82190

1990 Approach

- Evaluate dynamics of Northern Yellowstone Elk Herd using available data
- Predict characteristics of wolf population growth and predation from literature
- Build an empirically based projection model
- Validate portions of the model by comparing predictions to observed data

- 1990's predicted success for wolves
- Northern Yellowstone elk herd projected to be stable with high chance of persistence but average abundance depends on
 - Hunter harvest
 - Winter severity

Implications: Hunter Harvest

- Population trend for Northern Yellowstone Elk herd was very sensitive to:
- Human harvest rate
 - @ 9% harvest ('70-'80s) Stable with wolves
 - @ 11% harvest ('95-'05) Declines with wolves
 - @ 7% harvest Increases with wolves
 - @ 9% harvest Increases without wolves

Implications: Winter Severity

- Population trend for Northern Yellowstone Elk herd at current size is very sensitive to:
- Winter severity:
 - Average severity: population stable
 - Mild winters: population increases 10% / year
 - Severe winters: population decreases 10% /year
- In 1/3 of years, population either increases or decreases at least 10%