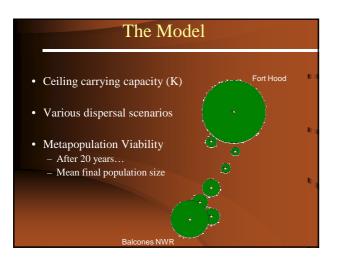



- juniper and oak
- declined due to habitat loss and fragmentation from clearing of juniper for urban expansion, agriculture, and commercial harvest


Recovery Credit System

- Fort Hood "buys" the conservation rights to habitat patches on private lands
- Unintentional loss of habitat on Fort Hood is "offset" by these purchases
- Golden-cheek metapopulation remains "unharmed"

How should off-post patches be valued?

The Model

HY 0.40	0.058	0	0
SY 0.57	0.010	1.2	0.024
ASY 0.57	0.010	1.3	0.006

The Model

Characteristics of 10 hypothetical patches used to investigate the relationship between patch importance and patch size or distance from largest patch.

i.

Patch Id	Patch Size (K)	Distance from largest patch
Popl	238	
Pop2	250	7 📭
Pop3	300	
Pop4	350	
Pop5	400	
Pop6	550	5
Pop7	700	3
Pop8	1000	
Pop9	6000	
Pop10 (i.e., Fort Hood)	12371	

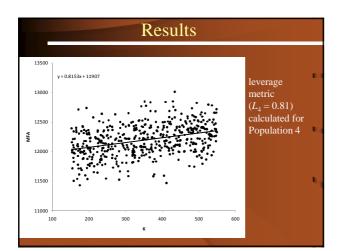
Dispersal

Description
No dispersal
15% symmetric dispersal
15% symmetric dispersal; disperser survival declines with distance
Excess individuals above K become dispersers
Same as KD; disperser survival declines with distance
Same as KSurvD; Larger pops. have higher survival and fecundity

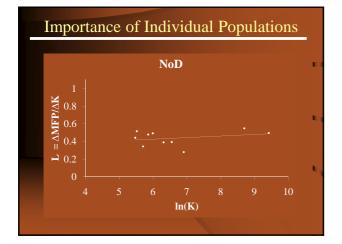
Predictors of Patch Leverage

Varied each patch size by +/- 200

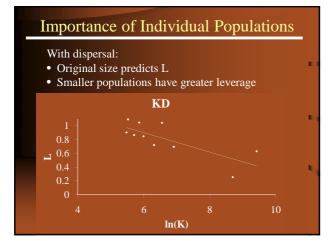
Patch Leverage $(L_j) = \frac{\text{Change in MFA}}{\text{Change in patch } j}$

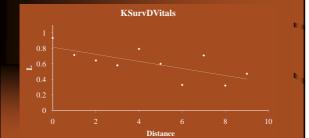

Ľ

Patch Leverage (L_j)


= *f*(original patch size and/or distance from largest patch)

Scenario	Mean Final Abundance
lоD	11182
SymD	9870
burvD	7884
KD	13037
KSurvD	12212
KSurvDVitals	16879





Importance of Individual Populations

- With dispersal and size-dependent vital rates:Distance from largest (Fort Hood) predicts LCloser populations have greater leverage

So...

 How much habitat needs to be conserved/added to Patch A to offset loss of 50 territories in Patch B?

$$\Delta_A = \Delta_B \times \frac{L_B}{\hat{L}_A}$$

• Under dispersal scenario KD; Patch B initially held 250 territories and Patch A held 6000

$$\Delta_{A} = 50 \times \frac{1.74 - 0.14 \times \ln(250)}{1.74 - 0.14 \times \ln(6000)} = 93$$