

- Density is homogeneous within the survey area
- Some individuals go undetected
- Probability of detection is related to distance from the observer
- If we can assume all individuals at distance = 0 are detected, we can estimate the proportion that go undetected
- Points are fixed at the initial sighting position (i.e., no movement before or after).
- Distance and angles are measured exactly.
- Sightings are independent events.
- For clustered populations, the probability of sighting a cluster (e.g., flock, covey, etc.) is independent of cluster size.

Results Scenario 3							
<u>Assumed</u>	# counted	g(0)	PD	Abund			
Survey 1	42	1	0.27	154			
Survey 2	60	1	0.27	220			
Actual	# counted	g(0)	PD	Abund			
Survey 1	42	0.7	0.19	220			
Survey 2	60	1	0.27	220			

Results Scenario 4							
Assumed	# counted	g(0)	PD	Abund			
Survey 1	42	1	0.27	154			
Survey 2	85	1	0.39	220			
Actual	# counted	g(0)	PD	Abund			
Survey 1	42	0.7	0.19	220			
Survey 2	85	1	0.39	220			

Results Summary

- Estimates are unbiased due to increased detectability IF Actual[g(0)] = 1 for both surveys
- Estimates are biased low IF Actual[g(0)] < 1

Correcting the Bias

 There is a relationship between the true number and the *biased* estimate IF *Actual*[g(0)] is KNOWN

TrueAbund = EstAbund * 1/Actual[g(0)]

Estimating Actual[g(0)]

- Paired observer methods (Kissling and Garton 2006)
- Model the probability of detection at close distances based on environmental covariates

Kissling, M. L. and E. O. Garton. 2006. Estimating detection probability and density From point-count surveys: a combination of distance and double-observer sampling. The Auk 123:735-752.